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ABSTRACT

One primary purpose in a dose–response study for drug
development is to identify the minimum effective dose
(MED), which is the lowest dose level producing an effect
over that of the zero-dose control. Proposed herein is a
nonparametric step-down closed testing procedure for
identifying the MED in a randomized block design with one
or more observations per cell. The associated p-value of the
identified MED is then obtained. Numerical examples
further demonstrate the feasibility of the proposed testing
procedure. Finally, the comparative results of a Monte Carlo
investigation of the relative error rate and power
performances are presented and discussed.
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1. INTRODUCTION

To investigate the effect of a substance in a dose–response study,
several increasing dose levels of the substance are usually compared with
a zero-dose control. One factor of interest in such a study is to identify the
lowest dose level producing a desirable effect over that of the zero-dose
control, which is commonly referred to as the minimum effective dose
(MED, see, for instance, Ruberg, 1989). An example of this arises in studies
of the effect of laboratory animals to a substance such as a drug, a food
additive, or a pesticide.

Nonparametric procedures for identifying the MED in a one-way
layout have been extensively studied by many authors. Shirley (1977) and
Williams (1986) considered multiple tests for identifying the MED based
on the isotonic regression estimators of the Kruskal–Wallis (1952) average
ranks under the assumption of a monotonic (or an ordered) dose–
response relationship. Chen and Wolfe (1993) further suggested multiple
tests for contrasting increasing dose levels based on the rank-based iso-
tonic regression estimators under an up-and-down dose–response relation-
ship, which is also known as an umbrella pattern (Mack and Wolfe,
1981). To make the MED identification procedure easy to implement,
Chen (1999) proposed a multiple test based on the Mann–Whitney
(1947) statistics incorporated into the step-down closed testing scheme
suggested by Tamhane et al. (1996). Notice that the power performance
of Chen’s test is at least competitive to that of the isotonic regression-
based procedures for an ordered dose–response relationship. Moreover,
Chen’s test is more powerful than the Chen-Wolfe procedure for an
umbrella pattern dose–response relationship.

In a one-way layout, however, existing differences between the
increasing dose levels and the zero-dose control may be obscured by
relatively large variability of subjects within the samples. This problem
can often be alleviated by conducting a randomized block design where
the subjects are divided into more homogeneous blocks and the subjects
in each block are randomly assigned to receive different dose levels under
study. For the randomized block design with one observation per cell,
House (1986) extended Williams’ (1986) test based on the isotonic regression
estimators of Friedman’s (1937) average ranks for a monotonic dose–
response relationship. Lim and Wolfe (1997) further proposed isotonic
regression-based multiple tests under the assumption of an umbrella pattern
dose–response relationship. Note that a variety of general randomized block
designs in which the control is allowed to appear more often than the
individual treatments have been discussed for multiple comparisons with a
control, see, for example, Bechhofer and Tamhane (1981) and Spurrier
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(1988,1993). However, the problem of the MED identification has not yet
been addressed for any more general block design. In this paper, we extend
Chen’s (1999) test for the more general randomized block design with multi-
ple observations per cell. The associated p-value of the identified MED is
further obtained which is defined to be the smallest level of significance at
which the dose level would be declared to be the MED.

In Section 2, an extension of Chen’s (1999) test to a general
randomized block design is proposed. Two examples illustrating the use
of the test procedure are given in Section 3. Finally, in Section 4, the results
of a Monte Carlo simulation investigation of the relative error rate and
power performances of the competing tests are presented and discussed.

2. PROPOSED TEST

Let Yij1,Yij2, . . . ,Yijnij (i ¼ 1, 2, . . . , b, j ¼ 0, 1, . . . , k and nij � 1) be
independent continuous random variables with the distribution function
of Yijt given by F(x� �i� �j), where the �i are block effects that are not of
direct interest and the �j are treatment effects. Suppose that the zero
treatment ( j¼ 0) is the zero-dose control and the other k treatments corres-
pond to increasing dose levels. In this paper, specifically, we consider
identification of the MED which is the smallest dose level producing a
better treatment effect than does the zero-dose control; namely,

MED ¼ minf j : �j > �0, j ¼ 1, 2; . . . , kg

As noted in Tamhane et al. (1996), the family of null hypotheses
H¼ {H0j}, where

H0j : ð�0 ¼ �1 ¼ � � � ¼ �j�1 ¼ �jÞ, j ¼ 1, 2, . . . , k,

is closed under intersection in the sense that H0i2H and H0j2H imply
H0i \H0j 2 H (Marcus et al., 1976). Hence, a level � closed procedure,
which includes separate level � tests of individual H0j applied in a step-
down manner, can be employed in finding the MED. Moreover, the
closed testing scheme strongly controls the family-wise error rate (FWE),
which is the probability that at least one true H0j is rejected. Therefore, we
consider using nonparametric statistics incorporated into a step-down
closed testing scheme to identify the MED for the general randomized
block design with one or more observations per cell.
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Let Tij be the Mann–Whitney (1947) statistic comparing the jth dose
level with all the lower dose groups combined in the ith block, namely,

Tij ¼
Xj�1

u¼0

Xnij

s¼1

Xniu
r¼1

IðYijs � YiutÞ, i ¼ 1, 2, . . . , b, j ¼ 1, 2, . . . , k,

where I(a)¼ 1 if a>0,¼ 0, otherwise.
Notice that, for each i¼ 1, 2, . . . , b, the Tij are uncorrelated under H0k

(Terpstra, 1952). Let Ni
j ¼

Pj
s¼0 nis, i¼ 1, 2, . . . , b, j¼ 1, 2, . . . , k. Set Tj ¼Pb

i¼1 Tij , j¼ 1, 2, . . . , k. Since observations in different blocks are indepen-
dent, the null (H0k) mean and variance of Tj are respectively given by

�ðTjÞ ¼
Xb
i¼1

nijN
i
j�1

.
2

and

�2ðTjÞ ¼
Xb
i¼1

nijN
i
j�1ðN

i
j þ 1Þ

.
12

If there are ties among the Ni
j observations, a modification of the Var(Tj) is

then obtained by replacing the ðNi
j þ 1Þ with ðNi

j þ 1Þ �
Pgi

u¼1ðt
3
u � tuÞ=

fNi
j ðN

i
j � 1Þg, where gi is the number of tied groups in block i and tu is the

size of the tied group u. Let

T�
j ¼ fTj � �ðTjÞg=�ðTjÞ, j ¼ 1, 2, . . . , k,

where �ðTjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðTjÞ

q
. Notice that, under H0k, the statistics T

�
1 ,T

�
2 , . . . ,T

�
k

are uncorrelated. The Projection Theorem (see, for example, Randle and
Wolfe, 1979) then implies that, the asymptotic null (H0k) distribution of
ðT�

1 , . . . ,T
�
k Þ is a k-variate normal with zero mean vector and identity covar-

iance matrix. Let z(c) be the upper cth percentile of a standard normal
distribution. Then, the asymptotic independence of T�

1 , . . . ,T
�
k implies

that, for each j¼ 1, 2, . . . , k.

1� �  PfmaxðT�
1 , . . . ,T

�
j Þ � zð�ð jÞÞjH0jg,

where �ð jÞ  1� ð1� �Þ1=j.
As an extension of Chen’s (1999) test, we describe a step-down closed

testing scheme suggested by Tamhane et al. (1996) together with the test
statistics T�

1 , . . . ,T
�
k for a general randomized block design in the following:

To identify the MED at level �, we first let k1¼ k and find
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T�
k1ð Þ ¼ maxðT�

1 , . . . ,T
�
k1
Þ. Define d(k1) to be the anti-rank of T

�
k1ð Þ; that is,

T�
k1ð Þ ¼ T�

d k1ð Þ. Then, if T
�
k1ð Þ � zð�ðk1ÞÞ, we reject H0j, j¼ d(k1), . . . , k1, and go

to the second step with k2¼ d(k1)� 1; otherwise, stop testing and accept all
the null hypotheses. In general, at the ith step, let ki¼ d(ki� 1)� 1. If
maxðT�

1 , . . . ,T
�
ki
Þ or T�

dðkiÞ
� zð�ðkiÞÞ, then we reject H0j, j¼ d(ki), . . . , ki;

otherwise, stop testing. When testing stops at, say, the mth step, identify
the MED as d(km� 1) or kmþ 1.

Notice that the p-value of a single test which is the smallest significance
level leading to the rejection of its null hypothesis is usually reported for
demonstrating the strength of the statistical evidence for the rejection. For
the multiple test proposed in this paper, the p-value of the identified MED
can be computed as the smallest significance level at which the dose level
would be declared as the MED. Let t�d kið Þ be the observed value of
T�
dðkiÞ

¼ maxfT�
1 , . . . ,T

�
ki
g at the ith step. Compute

p�ðkjÞ ¼ P T�
ðkjÞ � t�dðkjÞ

���H0kj

n o

¼ P At least one T�
s � t�d kjð Þ, s ¼ 1, . . . , kj

���H0kj

n o

¼ 1� P T�
s < t�dðkjÞ, s ¼ 1, . . . , kj

���H0kj

n o

 1� �ðt�dðkjÞÞ
n okj

,

where �(�) is the distribution function of a standard normal variable. The
adjusted p-value (Wright, 1992) is then defined to be

pðkiÞ ¼ max p�ðk1Þ, . . . , p
�
ðkiÞ

	 

:

As an equivalent version of the step-down testing procedure mentioned in
last paragraph, the MED can be identified at significance level � based on
the adjusted p-value, p(ki), where the null hypotheses H0j, j¼ d(ki), . . . , ki,
are rejected at the ith step, if p(ki)<�. If the test stops at, say, the mth step,
then the MED is identified to be kmþ 1 and the p-value of this conclusion is
p(km� 1), which provides a measure of the strength of evidence for the
rejection of H0km�1 : ð�0 ¼ �1 ¼ � � � ¼ �km�1 Þ.

3. EXAMPLES

First consider the data set in Table 1 analyzed in House (1986), which
corresponds to an experiment conducted to determine the lowest dose of
sulfur dioxide (SO2) with a significant increase in a specific airway resistance
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(sRaw). Each of the 11 subjects (blocks) participated in four randomly
ordered 10-minute exposures, one for each dose and separated by at least
1 week. The four doses of SO2 under study were 0.00, 0.25, 0.5 and 1 ppm.
The change in sRaw from pre-exposure to after 10minutes of exposure is
observed. The summary statistics are obtained in the following:

T1 ¼ 6:5, T2 ¼ 20, T3 ¼ 24

�ðT1Þ ¼ 5:5, �ðT2Þ ¼ 11, �ðT3Þ ¼ 16:5

�2ðT1Þ ¼ 2:0, �2ðT2Þ ¼ 7:33, �2ðT3Þ ¼ 13:5

Notice that the largest statistic among the three T�0
i s is T

�
2 , so d(3)¼ 2.

The value of pð3Þ ¼ p�ð3Þ  1� f�ð3:32Þg3  0:001ð< 0:01Þ leads to a
second-step comparison with k2¼ 1. Since p

�
ð1Þ  1��ð0:71Þ  0:2389,

the step-down closed test identifies the MED to be 2. Although, under the
significance level �¼ 0.01, House’s (1986) test also reaches the same conclu-
sion that 0.5 ppm is the lowest dose of SO2 which produces a significant
increase in sRaw. However, by using the step-down closed test, we further
obtain 0.001 as an approximated p-value for the conclusion.

The second data set in Table 2 reported in Simpson and Margolin
(1986) was obtained from the three replicate (block) Ames test conducted
by Ames et al. (1975) in which plates containing Salmonella bacteria of
strain TA98 were exposed to various doses of Acid Red 114, including 0,

Table 1. Changesa in sRaw (cm. H2O/sec.) for Eleven Subjects
Exposed to a Control and Three Concentration of SO2 (ppm)

Concentration of SO2 (ppm)

Subject 0.00 0.25 0.50 1.00

1 0.2 2.3 �0.8 4.0
2 6.2 12.7 13.1 9.0
3 0.3 �0.2 1.1 4.2

4 0.3 2.1 12.8 6.7
5 4.9 6.0 18.2 35.0
6 1.8 1.8 3.4 9.0

7 3.9 3.9 13.5 12.9
8 2.0 1.1 4.4 2.0
9 0.3 3.8 6.1 7.1

10 2.5 2.5 2.8 1.5
11 5.4 1.3 10.6 10.6

a10-minute exposure measurement minus pre-exposure measure-

ment.
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100, 333, 1000, 3333 and 10000 mg/ml. The number of visible revertant
colonies on each plate was observed. Notice that there are 3 plates for
each dose level in every replicate, but only 2 plates are used for the last
dose level in the second replicate. To investigate at which dose of Acid Red
114 the number of visible revertant colonies shows a significant increase
from that at the zero-dose control, we compute the following statistics:

T1 ¼ 21:5, T2 ¼ 47:5, T3 ¼ 72:5, T4 ¼ 44, T5 ¼ 8

�ðT1Þ ¼ 13:5, �ðT2Þ ¼ 27, �ðT3Þ ¼ 40:5, �ðT4Þ ¼ 54, �ðT5Þ ¼ 60

�2ðT1Þ ¼ 15:6, �2ðT2Þ ¼ 44:875, �2ðT3Þ ¼ 87:44

�2ðT4Þ ¼ 143:66, �2ðT5Þ ¼ 187:2

T�
1 ¼ 2:03, T�

2 ¼ 3:06, T�
3 ¼ 3:42, T�

4 ¼ �0:83, T�
5 ¼ �3:80

First, let k1¼ 5. Notice that d(5)¼ 3 and pð5Þ ¼ p�ð5Þ  1� f�ð3:42Þg5 ¼
0:0015ð< 0:01Þ lead to a second-step comparison with k2¼ 2 and d(2)¼ 2.
Since p�ð2Þ  1� f�ð3:06Þg2  0:0022, the adjusted p-value is obtained as
pð2Þ ¼ maxfp�ð5Þ, p�ð2Þg ¼ 0:0022ð<0:01Þ. Now, p�ð1Þ  1��ð2:03Þ ¼
0:0212. Therefore, we reach the conclusion that the MED of Acid Red
114 is 333 mg/ml at which there is a significant increase of visible revertant
colonies with an approximate p-value of 0.0022. However, we can also
conclude that the MED is 100 mg/ml, but the associated p-value is about
pð1Þ ¼ maxfp�ð5Þ, p�ð2Þ, p�ð1Þg ¼ 0:0212.

Table 2. Revertant Colonies for Acid Red 114, TA98, Hamster
Liver Activation

Dose (mg/ml)

Replicate 0 100 333 1000 3333 10000

1 22 60 98 60 22 23
23 59 78 82 44 21
23 54 50 59 33 25

2 19 15 26 39 33 10

17 25 17 44 26 8
16 24 31 30 23

3 23 27 28 41 28 16
22 23 37 37 21 19

14 21 35 43 30 13
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4. MONTE CARLO STUDY

A Monte Carlo study was conducted to examine the relative error rate
and power performances of House’s (H) test, Lim-Wolfe tests for both the
peak-known (LW( p)) and peak-unknown (LWð p̂pÞ) cases, and the step-down
closed test (SDT) proposed in this paper for identifying the MED in a
randomized block design with one observation per cell. The study was
performed for comparing k¼ 3 and 4 treatments with a control in b¼ 10
blocks and for a variety of monotonic (ordered) and up-and-down
(umbrella) dose–response relationship.

For each of these settings, appropriate normal and exponential devi-
ates were generated by using the IMSL routines RNNOR and RNEXP,
respectively. The normal distributions under consideration have the same
variance 10 but different means �i, and the exponential distributions have
various location parameters �i with a common scale parameter 1. The desig-
nated alternative configurations correspond to values of �i0¼ �i� �0,
i¼ 1, 2, . . . , k, which include step and linear typed ordered treatment effects
and umbrella patterned treatment effects. The family-wise error rate (FWE,
the probability of incorrectly identifying a lower MED) and the power (the
probability of correctly identifying the MED) are simulated. In each case,
we used 10 000 replications in obtaining the various FWE and power esti-
mators. To assess the power performances of the four tests over all the
situations considered in the study, we also computed their average
powers. The FWE and power estimates for the four tests are presented in
Tables 3 and 4. Notice that, under the nominal level �¼ 0.05, the standard
deviation of the estimated FWE is about 0:002ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:05Þð0:95=10000Þ

p
. Also

notice that, when the true MED is 3, for example, if the identified MED� 2,
then the test makes the Type I error and contributes to the family-wise error
rate. If, however, the true MED is 1, then the FWE is zero, since no Type I
errors are involved. Therefore, the entry of estimated FWE¼ .000 is omitted
for all procedures.

We observe from the simulation results that the FWE of the four
testing procedures are not significantly higher than the nominal level 0.05.
In fact, the SDT test even tends to be conservative in controlling its FWE
for some configurations.

The power estimates in Tables 3 and 4 show that the H test (a special
case of LW( p) test with p¼ k) has excellent power when treatment effects
have a monotonic ordering. However, the power of the H test drops when
there is a downturn in the dose–response relationship. For the umbrella
pattern dose–response relationship with MED $>$ 1 under study, the
SDT test has, in general, higher power than does the H test. Therefore, on
the average, the power performance of the SDT test is better than the H test.
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It is not surprising to find that the peak-known Lim-Wolfe LW( p) test
performs well for all the alternatives under consideration. However, when
the true MED is not the first nonzero dose level, the SDT test even outper-
forms the LW( p) test. Although the average power of SDT test is slightly
lower than that of the LW( p) test, the SDT test provides indeed a com-
petitor to the LW( p) test for identifying the MED. Moreover, the power
performance of the LW( p̂p) test further indicates that the SDT test should be
used if the peak of the umbrella pattern dose–response relationship is not
certain.

In conclusion, the use of the proposed step-down closed test is recom-
mended for identifying the MED in a randomized block design. The pro-
posed test is very easy to implement relative to the competing House’s or
Lim-Wolfe tests, since it involves only the two-sample Mann–Whitney

Table 3. Estimated FWE and Power for �¼ 0.05, k¼ 3 and b¼ 10

FWE Power

�10 �20 �30 H LW( p) LW( p̂p) SDT H LW( p) LW( p̂p) SDT

(a) Normal distribution

0 0 3 0.049 0.049 0.047 0.023 0.827 0.827 0.782 0.930
0 3 3 0.053 0.053 0.052 0.048 0.818 0.818 0.408 0.849
3 3 3 — — — — 0.862 0.862 0.273 0.731

0 2 3 0.051 0.051 0.047 0.036 0.569 0.569 0.391 0.535
1 2 3 — — — — 0.247 0.247 0.193 0.155
0 3 2 0.053 0.053 0.045 0.049 0.725 0.870 0.425 0.854

0 3 0 0.042 0.052 0.023 0.047 0.237 0.851 0.781 0.856
2 3 2 — — — — 0.596 0.619 0.288 0.486
2 3 0 — — — — 0.379 0.624 0.385 0.492

Average power 0.584 0.699 0.436 0.654

(b) Exponential distribution

0 0 3 0.048 0.048 0.046 0.026 0.614 0.614 0.536 0.754
0 3 3 0.055 0.055 0.048 0.041 0.599 0.599 0.324 0.624

3 3 3 — — — — 0.618 0.618 0.226 0.441
0 2 3 0.048 0.048 0.040 0.025 0.396 0.339 0.396 0.247
1 2 3 — — — — 0.198 0.113 0.198 0.144
0 3 2 0.056 0.058 0.042 0.044 0.490 0.714 0.350 0.619

0 3 0 0.035 0.052 0.022 0.037 0.150 0.676 0.533 0.617
2 3 2 — — — — 0.423 0.457 0.206 0.296
2 3 0 — — — — 0.253 0.441 0.239 0.292

Average power 0.416 0.508 0.334 0.448
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statistics and the necessary critical values can be found from a standard
normal table. Meanwhile, when there is only one observation per cell, the
proposed test controls the family-wise error rate well and has a better or, at
least competitive power performance to the competing tests for most prac-
tical situations. In addition, the proposed test is applicable to the general
randomized block design with multiple observations per cell, which is of

Table 4. Estimated FWE and Power for �¼ 0.05, k¼ 4 and b¼ 10

FWE Power

�10 �20 �30 �40 H LW( p) LW( p̂p) SDT H LW( p) LW( p̂p) SDT

(a) Normal distribution

0 0 0 4 0.044 0.044 0.058 0.041 0.938 0.938 0.895 0.958
0 0 4 4 0.049 0.049 0.049 0.025 0.925 0.925 0.419 0.973
0 4 4 4 0.055 0.055 0.055 0.054 0.926 0.926 0.263 0.936

4 4 4 4 — — — — 0.981 0.981 0.288 0.926
0 0 3 4 0.050 0.050 0.049 0.024 0.823 0.823 0.631 0.927
0 2 3 4 0.048 0.048 0.046 0.032 0.572 0.572 0.383 0.537

1 2 3 4 — — — — 0.238 0.238 0.203 0.150
0 0 4 3 0.049 0.049 0.049 0.028 0.916 0.928 0.250 0.971
0 0 4 0 0.044 0.048 0.038 0.024 0.365 0.917 0.896 0.974
0 3 4 3 0.050 0.050 0.050 0.046 0.842 0.846 0.379 0.857

0 3 4 0 0.051 0.053 0.043 0.049 0.570 0.823 0.634 0.849
2 3 4 3 — — — — 0.624 0.625 0.479 0.488
2 3 4 0 — — — — 0.554 0.602 0.379 0.477

Average power 0.713 0.780 0.469 0.771

(b) Exponential distribution

0 0 0 4 0.043 0.043 0.058 0.044 0.817 0.817 0.696 0.925
0 0 4 4 0.053 0.053 0.051 0.026 0.756 0.756 0.371 0.913

0 4 4 4 0.054 0.054 0.053 0.048 0.754 0.754 0.250 0.800
4 4 4 4 — — — — 0.784 0.784 0.251 0.611
0 0 3 4 0.045 0.045 0.044 0.023 0.622 0.622 0.427 0.755

0 2 3 4 0.048 0.048 0.043 0.027 0.398 0.398 0.237 0.351
1 2 3 4 — — — — 0.195 0.195 0.159 0.112
0 0 4 3 0.051 0.051 0.046 0.026 0.729 0.831 0.329 0.917

0 0 4 0 0.044 0.052 0.042 0.030 0.242 0.792 0.698 0.914
0 3 4 3 0.054 0.054 0.050 0.041 0.621 0.622 0.274 0.624
0 3 4 0 0.052 0.056 0.044 0.040 0.362 0.610 0.420 0.616

2 3 4 3 — — — — 0.444 0.447 0.317 0.302
2 3 4 0 — — — — 0.380 0.436 0.246 0.302

Average power 0.532 0.622 0.347 0.618
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greater practical use. Finally, by using the proposed step-down test, the
approximate p-value of the identified MED can be obtained which further
provides a measure of strength of statistical evidence for the MED
identification.
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