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Abstract

In this paper we are concerned with the problem of comparing adjacent ordered treatments in
a one-way layout where survival data are subject to random right censorship. Multiple testing
procedures based on two-sample statistics, each comparing an individual treatment with the
previous one, are proposed for determining the pattern of the treatment e�ects. The two-sample
statistics under consideration are weighted logrank statistics (Fleming and Harrington, 1991,
Counting Process and Survival Analysis. Wiley, New York) and weighted Kaplan–Meier statistics
(Pepe and Fleming, 1989. Biometrics 45, 497–507; 1991. J. Roy. Statist. Soc. B 53, 341–352).
An illustrated numerical example is reported. Finally, the comparative results of a Monte Carlo
error rate and power study for small sample sizes are presented. c© 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The e�ects of a toxin or a drug are often investigated by an experiment including
several increasing dose levels (treatments) of the substance. Usually, it can be reason-
ably assumed that the increasing dose levels produce stronger or at least equal treat-
ment e�ects. However, the pattern of the monotonic dose response relationship remains
unknown. To get insight into the pattern when data are normally distributed, van Eeden
(1960), and Lee and Spurrier (1995a) considered multiple comparisons between neigh-
boring dose levels to decide if a dose increase leads to an additional e�ect or the dose
response relationship in this domain is too at. Budde and Bauer (1989) and Lee and
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Spurrier (1995b) suggested nonparametric procedures for comparing the adjacent treat-
ments when data are not normally distributed. In animal carcinogenesis experiments or
comparative clinical trials, however, it occurs frequently that the primary outcome of
interest is time to a certain event (for example, death, tumor occurrence). Moreover,
randomly right-censored data are often involved in these studies, since subjects who
randomly enter the study to receive treatments may be lost to follow-up randomly, or
the study may be terminated at a preassigned time owing to time limitation. Therefore,
testing procedures for determining the pattern of the treatment e�ects with randomly
right-censored survival data are needed.
For the ith sample (i = 1; : : : ; k), let Ti1; : : : ; Tini be independent identically dis-

tributed (i.i.d.) random variables each with a continuous distribution function Fi, and
let Ui1; : : : ; Uini be i.i.d. random variables each with a continuous distribution function
Ci, where Uij is the censoring time associated with the survival time Tij. Suppose that
the k samples are independent of each other and the Uij are distributed independent of
Tij. In such a setting, we actually only observe the bivariate vectors (Xij; �ij), where
Xij = min(Tij; Uij); �ij = 1, if Xij = Tij, and 0, otherwise. Let Si = 1 − Fi be the sur-
vival function of the ith group, i=1; : : : ; k. Liu et al. (1993) based on weighted logrank
statistics (Fleming and Harrington, 1991) to develop testing procedures for the null hy-
pothesis H0: (Si=S; i=1; 2; : : : ; k) against the ordered alternative H1: (S16S26 · · ·6Sk
with at least one strict inequality) (Barlow et al., 1972). Chi and Chen (1998) further
suggested an ordered test on the basis of the weighted Kaplan–Meier statistics (Pepe
and Fleming, 1989, 1991). Note that both the tests are designed for testing against
the global ordered alternative H1, but they do not provide any information about the
ordered pattern of the treatment e�ects.
To determine the pattern of the treatment e�ects when survival data are subject to

random right censorship, we consider multiple testing procedures between neighboring
treatments on the basis of the two-sample statistics each comparing an individual treat-
ment with the previous one. The two-sample statistics under consideration are weighted
logrank statistics and weighted Kaplan–Meier statistics. The use of these testing pro-
cedures is illustrated with the numerical example assessing the e�ect of ovalbumin
immune bone marrow cells on the transfer antitumor activity (Hornung et al., 1995).
Comparative results of a Monte Carlo study investigation demonstrate the relative error
rate and power performances of these testing procedures for small sample sizes. Some
suggestions and conclusions are �nally given.

2. Weighted logrank multiple tests

For i = 1; : : : ; k; let Di(t) = #{u: Xiu6t; �iu = 1; u = 1; 2; : : : ; ni} be the number of
patients in group i who have been died by time t and let Yi(t) = #{u: Xiu¿t; u =
1; 2; : : : ; ni} be the number of patients in group i who are still alive and uncensored at
time t. Let Ni+ = ni + ni+1; Yi+(t) = Yi(t) + Yi+1(t) and Di+(t) = Di(t) + Di+1(t). Set
tc=minimum(t1; : : : ; tk), where ti is the last observation in group i. Using the counting
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process formulation described in Gill (1980), the weighted logrank statistic comparing
the (i + 1)th treatment with the ith treatments is

WLRi =
∫ tc

0
Wi(t)

Yi(t)Yi+1(t)
Yi+(t)

{
dDi(t)
Yi(t)

− dDi+1(t)
Yi+1(t)

}
: (2.1)

Fleming and Harrington (1991) suggested to use Wi(t) = {Ŝ i(t)}�{1 − Ŝ i(t)} for
�; ¿0, where Ŝ i(t) is the Kaplan and Meier (1958) survival estimate based on the
ith and (i + 1)th samples. Note that taking � =  = 0 produces the logrank statistic
(Mantel, 1966) and setting �=1 and =0 yields the Peto–Prentice statistic (Peto and
Peto, 1972; Prentice, 1978). Moreover, the consistent and unbiased estimator of the
variance of WLRi is given by

sii =
∫ tc

0
W 2
i (t)

Yi(t)Yi+1(t)
Yi+(t)

{
1− �Di+(t)− 1

Yi+(t)

}
dDi+(t)
Yi+(t)

; (2.2)

where �Di+(t) = Di+(t)− Di+(t−). Let
WLR∗

i =WLRi=
√
sii; i = 1; 2; : : : ; k − 1: (2.3)

It can be shown (see Appendix) that, under the null hypothesis H0, the asymptotic
distribution of the random vector (WLR∗

1 ;WLR
∗
2 ; : : : ;WLR

∗
k−1) is the (k − 1)-variate

normal with mean zero vector and correlation matrix R= {rij}, where rij =�ij=√�ii�jj
and the �ii and �ij are stated in Eqs. (A.1) and (A.2). Note that the matrix R can be
consistently estimated by R̂= {sij=√siisjj}, where the sii are stated in (2.2) and the sij
are given by, for i¡ j = 2; : : : ; k − 1,

sij =−
∫ tc

0
Wi(t)Wi+1(t)

Yi(t)Yi+1(t)Yi+2(t)
Yi+(t)Yi+1+(t)

{
1− �Di++(t)− 1

Yi++(t)− 1
}
dDi++(t)
Yi++(t)

;

(2.4)

if i=j−1 and 0, otherwise, Di++(t)=Di(t)+Di+1(t)+Di+2(t); Yi++(t)=Yi(t)+Yi+1(t)+
Yi+2(t) and �Di++(t)=Di++(t)−Di++(t−). Let (Z1; Z2; : : : ; Zk−1) be a (k− 1)-variate
normal vector with mean zero and the correlation matrix R̂, and let zmax(k − 1; �) be
the upper �th percentile of the distribution of max(Z1; Z2; : : : ; Zk−1). As a generalization
of the Lee and Spurrier (1995a) testing procedure, we claim

Si+1¿Si if WLR∗
i¿zmax(k − 1; �) for i = 1; 2; : : : ; k − 1: (2.5)

It is obvious that the experimentwise error rate, the probability of erroneously declaring
at least one treatment better than its preceding one, for this procedure is approximately
controlled, since

�≈ P{max(WLR∗
1 ;WLR

∗
2 ; : : : ;WLR

∗
k−1)¿zmax(k − 1; �) |H0}

= P{WLR∗
i¿zmax(k − 1; �) for at least one i |H0}:

For any z, the probability P{max(Z1; Z2; : : : ; Zk−1)6z} can be computed using a pro-
gram for calculating multivariate normal probabilities (Schervish, 1984). Therefore,
the critical value zmax(k − 1; �) can be found such that P{max(Z1; Z2; : : : ; Zk−1)¿
zmax(k − 1; �)}= �.
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Table 1
Table of summary statistics for the bone marrow transplantation-tumor data

(i; i + 1) WLR(Logrank) WLR(Peto–Prentice) WKM

(1, 2) 0.591 0.991 0.657
(2, 3) 2.189 1.961 1.879
(3, 4) 0.437 0.434 0.363
(4, 5) −0:488 −0:553 −0:525
Correlation
(1, 2) and (2, 3) −0:487 −0:474 −0:627
(2, 3) and (3, 4) −0:459 −0:481 −0:515
(3, 4) and (4, 5) −0:502 −0:494 −0:518

Remember that weight function !i(t) = 1 corresponds to a logrank statistic, and
!i(t)= S(t) to a Peto–Prentice statistic. Under the assumption of equal censoring, that
is, Ci=C; i=1; 2; : : : ; k, we observe, from (A.3) and (A.4), that the correlation structure
for the two weight functions is

rii = 1; rij =

{
−
√
pipi+2=[(pi + pi+1)(pi+1 + pi+2)]; if i = j − 1;

0; otherwise:
(2.6)

This correlation structure is the same as that stated in Lee and Spurrier (1995a). There-
fore, when sample sizes are equal and the assumption of equal censoring is tenable,
we suggest to use the critical values reported in Lee and Spurrier’s (1995a) Table 1
with in�nite degrees of freedom.

3. Weighted Kaplan–Meier multiple tests

Note that the weighted logrank statistic in (2.1) on the basis of the di�erence of
the estimated hazard functions is, in fact, appropriate for testing against the hypothesis
of two ordered hazard functions. For constructing a procedure which is more sensitive
to testing against Si ¡Si+1, Pepe and Fleming (1989) proposed a class of weighted
Kaplan and Meier (1958) statistics given by

WKMi =
∫ Tc

0

√
nini+1ŵi(t){Ŝ i+1(t)− Ŝ i(t)} dt (3.1)

where Tc=sup{t: min(Ĝi(t); Ŝ i(t); i=1; : : : ; k)¿ 0}; Ĝi(t) be the Kaplan–Meier esti-
mator of censoring survival distribution Gi(t)=1−Ci(t); Ŝ i(t) is Kaplan–Meier estima-
tors of Si, and ŵi(t) is the random weight function which downweights the contribution
of Ŝ i+1(t)−Ŝ i(t) over later time periods if censoring is heavy so that the statistic WKMi

is stable. Moreover, if Si = Si+1 = S, the variance of WKMi can be estimated by

vii =
∫ Tc

0

{∫ Tc

t
ŵi(u)Ŝ(u) du

}2
niĜi(t−) + ni+1Ĝi+1(t−)

Ĝi(t−)Ĝi+1(t−)
dF̂(t)

Ŝ(t)Ŝ(t−) ; (3.2)

where Ŝ(t) is the Kaplan–Meier estimator of the common survival distribution S(t)
based on the ith and (i+1)th samples and F̂(t)=1− Ŝ(t). Let �pi be ni=N; i=1; : : : ; k.
For the k-sample setting studied in this paper, we employ the following weight function
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suggested in Pepe and Fleming (1989):

ŵi(t) =
Ĝi(t−)Ĝi+1(t−)

�piĜi(t−) + �pi+1Ĝi+1(t−)
: (3.3)

To determine the pattern of the treatment e�ects with randomly right-censored data,
we consider the random vector (WKM∗

1 ;WKM
∗
2 ; : : : ;WKM

∗
k−1), where

WKM∗
i =WKMi=

√
vii; i = 1; 2; : : : ; k − 1:

It can be shown in Appendix that under the null hypothesis H0, the asymptotic dis-
tribution of the random vector (WKM∗

1 ;WKM
∗
2 ; : : : ;WKM

∗
k−1) is the (k − 1)-variate

normal with mean zero and correlation matrix �= {�ij}, where �ij =�ij=
√
�ii�jj and

the �ii and �ij are stated in Eqs. (A.6) and (A.7), respectively. Note that the matrix �
can be consistently estimated by �̂ = {vij=√viivjj}, where the vii providing consistent
estimates of N�ii are stated in (3.2), and the vij as consistent estimates of N�ij are
given by, for i¡ j = 2; : : : ; k − 1,

vij =−√
nini+2

∫ Tc

0

{∫ Tc

t
ŵi(u)Ŝ(u) du

}{∫ Tc

t
ŵi+1(u)Ŝ(u) du

}

× dF̂(t)

Ŝ(t)Ŝ(t−)Ĝi+1(t−)
(3.4)

if i = j − 1, and 0 otherwise, and Ŝ(t) is the Kaplan–Meier estimator computed from
the combined samples of i; i+1, and i+2. As a resemble to the testing procedure in
(2.5), we claim

Si+1¿Si if WKM∗
i¿zmax

∗(k − 1; �); for i = 1; 2; : : : ; k − 1: (3.5)

where zmax∗(k − 1; �) is the upper �th percentile of the (k − 1)-variate normal distri-
bution with mean zero and correlation matrix �̂. Note that, from (A.8) and(A.9), the
correlation structure under equal censoring pattern is the same as in (2.6). Therefore,
the critical values reported in Lee and Spurrier’s (1995a) Table 1 with in�nite degrees
of freedom can, again, be used in (3.5) when the assumption of equal censoring is
tenable and sample sizes are equal.

4. An example

Hornung et al. (1995) conducted a laboratory study to assess whether antigen-speci�c
antitumor immune responses, elicited in normal donor mice by immunization with the
soluble form of the surrogate tumor antigen ovalbumin (OVA), can be transferred via
bone marrow transplantation into lethally irradiated, syngeneic recipient mice. In this
paper, we investigate the pattern of the antitumor immune responses transferred from
donors with increasing number of OVA-immune bone marrow cells.
Fifty female C57BL=6 mice bearing day-10, subcutaneous E.G7-OVA tumors were

given lethal TBI, then reconstituted with various doses of pooled bone marrow cells
from OVA-immune donors. The dosages of bone marrow considered in the study were:
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Fig. 1. The Kaplan–Meier estimates for the bone marrow transplantation-tumor data.

1× 107 Non-immune bone marrow cells (group 1); 5× 106 OVA-immune bone mar-
row cells (group 2); 1 × 107 OVA-immune bone marrow cells (group 3); 2 × 107

OVA-immune bone marrow cells (group 4); and 4 × 107 OVA-immune bone mar-
row cells (group 5). The measurement of record for each dosage group was the sur-
vival time after reconstituted with bone marrow cells. Mice without noticeable tu-
mors were sacri�ced and autopsied at 150 days and were considered long-term sur-
vivors, yielding censored data for their respective dosage groups. The Kaplan and Meier
(1958) estimates of the survival functions for the �ve groups of mice are presented in
Fig. 1. Since there is a monotonic relationship between the transferred OVA-immune
bone marrow cells and the antitumor immune responses, we reported, in Table 1, the
relevant one-sided statistics and the critical values of the proposed tests corresponding
to their correlation estimates.
The approximate 5% and 10% critical values corresponding to the three sets of

correlation estimates are 2.237 and 1.951, respectively. (The 5% and 10% critical val-
ues with in�nite degrees of freedom reported in Lee and Spurrier (1995a) are 2.238
and 1.952, respectively.) The WLR tests based on logrank and Peto–Prentice statistics
reach the same conclusion that, under the signi�cance level �=0:10, there is only one
signi�cantly di�erent pair of 5× 106 OVA-immune bone marrow cells (group 2) and
1× 107 OVA-immune bone marrow cells (group 3) in which group 3 produces better
antitumor immune response than does group 2. The WKM test fails to detect such a
di�erence at the same signi�cance level.
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5. Monte Carlo study

A Monte Carlo study was performed to examine the relative level and power per-
formances of the weighted logrank (WLR) and weighted Kaplan–Meier (WKM) tests
for comparing the adjacent treatments when survival data are subject to random right
censorship. The WLR tests based on logrank and Peto–Prentice statistics are denoted
by WLR(L) and WLR(P), respectively. Herein, we considered k = 5 treatment groups
with sample sizes n1 = · · ·= n5 = n= 10; 20; 30 in the error rate study and n= 20 and
30 in the power study.
Exponential distributions and three types of piecewise exponential distributions,

demonstrated in Fig. 2, were employed to be the survival distributions under the null
hypothesis and a variety of alternative hypotheses corresponding to di�erent types of

Fig. 2. Survival con�gurations for alternatives.
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Fig. 2. (continued)

hazard di�erences. The solid line in each panel represents the common survival func-
tion under the null hypothesis. Panel (I) displays the survival distributions generated by
exponential distributions with di�erent hazard rates which correspond to proportional
hazards; the survival distributions in panel (II) are generated by piecewise exponential
distributions to produce an early hazard di�erence alternative; the survival distributions
in panel (III) are generated by piecewise exponential distributions to give a middle
hazard di�erence alternative; and the survival distributions in panel (IV) generated
by piecewise exponential distributions yield a late hazard di�erence alternative. The
ordered alternatives considered in the study are (i) S1 = S2¡S3 = S4 = S5 and (ii)
S1 = S2¡S3 = S4¡S5. In both the alternatives, the �rst two groups have the same
hazard rate �1. In alternative (i), S3, S4 and S5 are survival functions corresponding
to �3, while, in alternative (ii), �2 is the hazard rate of groups 3 and 4, and S5 is
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the survival function corresponding to �3. Uniform distribution over (0; R) was used as
the censoring distribution. Various values of R which correspond to the probability of
censorship as 0.3 and 0.5 were considered in the error rate study, the corresponding
uniform distributions were then employed as censoring distributions in the power study.
Note that the censoring probabilities were �xed for each population in the error rate
study, but they may be di�erent for the populations involved in the power study due
to di�erent survival distributions.
For each of these settings, 25 000 replications were used to obtain the estimated

experimentwise error rates, 10 000 replications were employed to estimate the ex-
perimentwise powers (probability of correctly detecting at least one treatment bet-
ter than its preceding one) and marginal powers (probability of detecting the (i +
1)th treatment better than the ith treatment), denoted by �i under the nominal level
� = 0:05. Therefore, the standard error for the estimated error rate is around 0:001(≈√
(0:05)(0:95)=25 000), while the maximum standard error for the power estimate is

0:005(=
√
(0:5)(0:5)=10 000). The estimated error rates and powers are presented in

Tables 2–4, respectively.
Table 2 clearly reveals that the WLR(P) holds its error rate well across all the

simulations under consideration. In addition, the unweighted logrank test WLR(L) and
the WKM test reasonably maintain their error rates when the common sample size is
at least 20.
The power study in Tables 3 and 4 indicates that the WLR(L) test is more powerful

than either the WLR(P) or WKM test for exponential distributions. This result is not
surprising, since the WLR(L) test is the most e�cient one for proportional hazards.
Nevertheless, the WKM test provides with a competitor to the WLR(L) test for propor-
tional hazards. For early hazard di�erence alternatives, the WLR(P) test has the best

Table 2
Estimated level for k = 5 and n1 = · · · = n5 = n
n Distribution Censoring probability

0:3 0.5

WKM WLR(L) WLR(P) WKM WLR(L) WLR(P)

10 (I) 0.054 0.061 0.051 0.057 0.056 0.050
(II) 0.054 0.063 0.051 0.061 0.059 0.052
(III) 0.040 0.066 0.053 0.048 0.067 0.053
(IV) 0.044 0.066 0.052 0.043 0.067 0.051

20 (I) 0.051 0.056 0.050 0.054 0.054 0.049
(II) 0.055 0.055 0.052 0.052 0.049 0.050
(III) 0.051 0.060 0.051 0.053 0.056 0.050
(IV) 0.050 0.059 0.050 0.051 0.057 0.050

30 (I) 0.053 0.055 0.052 0.054 0.053 0.052
(II) 0.052 0.053 0.049 0.051 0.053 0.048
(III) 0.050 0.055 0.050 0.055 0.056 0.051
(IV) 0.050 0.056 0.050 0.051 0.057 0.047
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Table 3
Estimated experimentwise powers for k = 5 and n1 = · · · = n5 = n

n Alternative Censoring probability

0:3 0.5

WKM WLR(L) WLR(P) WKM WLR(L) WLR(P)

20 (I) (i) 0.755 0.772 0.718 0.528 0.554 0.528
(ii) 0.410 0.420 0.395 0.265 0.279 0.260

(II) (i) 0.560 0.509 0.609 0.587 0.555 0.565
(ii) 0.313 0.294 0.31 0.313 0.297 0.292

(III) (i) 0.427 0.399 0.623 0.483 0.498 0.542
(ii) 0.248 0.238 0.349 0.281 0.276 0.303

(IV) (i) 0.496 0.632 0.353 0.170 0.316 0.178
(ii) 0.307 0.413 0.241 0.115 0.198 0.126

30 (I) (i) 0.921 0.931 0.904 0.734 0.764 0.740
(ii) 0.573 0.594 0.537 0.382 0.398 0.380

(II) (i) 0.743 0.678 0.800 0.785 0.752 0.773
(ii) 0.437 0.402 0.477 0.460 0.440 0.443

(III) (i) 0.579 0.529 0.805 0.657 0.654 0.740
(ii) 0.332 0.299 0.488 0.373 0.363 0.430

(IV) (i) 0.693 0.838 0.529 0.236 0.486 0.271
(ii) 0.437 0.600 0.355 0.153 0.289 0.179

Table 4
Estimated marginal powers for k = 5 and n1 = · · · = n5 = n

n Alternative Censoring probability

0:3 0.5

WKM WLR(L) WLR(P) WKM WLR(L) WLR(P)

20 (I) (i) �2 0.755 0.772 0.718 0.528 0.554 0.528
(ii) �2 0.280 0.285 0.239 0.177 0.188 0.172

�4 0.184 0.189 0.177 0.107 0.111 0.104
(II) (i) �2 0.560 0.509 0.609 0.587 0.555 0.565

(ii) �2 0.255 0.243 0.272 0.249 0.242 0.234
�4 0.078 0.066 0.086 0.085 0.073 0.076

(III) (i) �2 0.427 0.399 0.623 0.483 0.498 0.542
(ii) �2 0.077 0.097 0.108 0.091 0.104 0.092

�4 0.186 0.154 0.271 0.208 0.192 0.231
(IV) (i) �2 0.496 0.632 0.353 0.170 0.316 0.178

(ii) �2 0.059 0.095 0.058 0.038 0.064 0.041
�4 0.259 0.349 0.195 0.081 0.144 0.088

30 (I) (i) �4 0.921 0.931 0.904 0.734 0.764 0.740
(ii) �2 0.414 0.431 0.375 0.269 0.282 0.264

�4 0.273 0.287 0.262 0.157 0.166 0.161
(II) (i) �2 0.743 0.678 0.800 0.785 0.752 0.773

(ii) �2 0.370 0.346 0.410 0.384 0.371 0.372
�4 0.106 0.085 0.113 0.124 0.109 0.116

(III) (i) �2 0.579 0.529 0.805 0.657 0.654 0.740
(ii) �2 0.099 0.118 0.152 0.120 0.115 0.264

�4 0.257 0.204 0.396 0.291 0.133 0.345
(IV) (i) �2 0.693 0.838 0.529 0.236 0.486 0.271

(ii) �2 0.087 0.143 0.080 0.050 0.090 0.056
�4 0.383 0.535 0.299 0.109 0.219 0.131
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power performance when the null censoring probability is light as 0.3, while the WKM
test outperforms over the other two when the null censoring probability is about 0.5.
This is because that the WKM test puts more weight on early times for heavy cen-
sored data. For middle occurring hazard di�erence alternatives, although the WKM test
is better than the WLR(L) test as speci�ed in Pepe and Fleming (1989), the WLR(P)
test is superior to the WKM test. For late di�erence hazard alternatives, the WLR(L)
has the highest power. The WKM test is second to the WLR(L) test when the null
censoring probability is light as 0.3. However, when the null censoring probability is
about 0.5, the WKM test puts less weight on late times, thereby reducing its power
for detecting the late occurring hazard di�erences. In this case, the WKM test is even
less powerful than the WLR(P) test.

6. Conclusions

To use the weighted logrank statistics (Fleming and Harrington, 1991) in constructing
the class of multiple test for comparing successive treatments, the most important issue
is how to choose appropriate weight functions. The logrank statistic (� =  = 0) is
known to be optimal under proportional hazards alternatives and the Peto–Prentice
statistic (�=1 and =0) is suitable for early occurring hazard di�erences. Moreover,
appropriate weight function would be the one corresponding to � = 1 and  = 1 for
hazard di�erences occurring at middle times, and � = 0 and  = 1 for late hazard
di�erences. Some useful plots, for example, the plot of log{-log(survival estimate)},
can be used to assess the feasibility of the proportional hazards. The Kaplan–Meier
survival estimates can also be used to investigate whether the hazards di�er at early,
middle or late times. Furthermore, although we only consider, for simplicity, the use
of the same type of weight function in this paper, we can, in fact, employ di�erent
types of weight functions for comparing di�erent pairs of adjacent treatments in the
weighted logrank multiple test.
The multipe test on the basis of weighted Kaplan–Meier statistics does not lose too

much power than the logrank multiple test for proportional hazards alternatives. In
addition, the power performance of the weighted Kaplan–Meier multiple test is com-
petitive for some nonproportional hazards alternatives. However, to use the weighted
Kaplan–Meier multiple test, we still need to select the weight function satisfying the
constraints speci�ed in Pepe and Fleming (1989) to ensure stability of the weighted
Kaplan–Meier statistic.
According to the observations stated above, we learn that the weighted Kaplan–Meier

multiple test may not be the best one, although it would not be the worst one in most
cases. Moreover, the weight function previously chosen in (3.3), for example, involves
the estimators for the censoring distributions, which seems to be a little bit curious. In
contrast to this, the weighted logrank multiple test does not use the censoring estimator
and the weight functions give the statistician the chance to make the test sensitive to
the corresponding hazard di�erences. For these reasons, the weighted logrank multiple
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test with appropriate weight functions is preferred for comparing successive treatments
if the times at which adjacent hazards are di�erent can be recognized clearly.
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Appendix A

A.1. Asymptotic null distribution of N−1=2(WLR1;WLR2; : : : ;WLRk−1)

Note that, when S1 = S2 = · · · = Sk , using the martingale framework, the statistic
WLRi in (2.1) can be written as

WLRi =
∫ tc

0

Ki(t)
Yi(t)

dMi(t)−
∫ tc

0

Ki(t)
Yi+1(t)

dMi+1(t);

where Ki(t) =Wi(t)Yi(t)Yi+1(t)=Yi+(t); Mi(t) = Di(t)−
∫ t
0 Yi(s) d�(s) are independent

zero-mean martingales and �(s) is the common cumulative hazard function. Suppose
that N→∞ in such a way that ni=N → pi, 0¡pi ¡ 1, i=1; 2; : : : ; k: If Yi(t)=ni

p→ �i(t);
i = 1; : : : ; k; and Wi(t)

p→!i(t) uniformly as N → ∞, then K2i (t)Yi+(t)]=
[NYi(t)Yi+1(t)]

p→ kii(t) and Ki(t)Ki+1(t)=[NYi+1(t)]
p→ ki+(t) uniformly as N → ∞ for

i = 1; 2; : : : ; k − 1, where
kii(t) = pipi+1!2i (t)�i(t)�i+1(t)=[pi�i(t) + pi+1�i+1(t)]

ki+(t) =pipi+1pi+2!i(t)!i+1(t)�i(t)�i+1(t)�i+2(t)={[pi�i(t) + pi+1�i+1(t)]
×[pi+1�i+1(t) + pi+2�i+2(t)]}:

Hence, the Martingale Central Limit Theorem (see, for example, Theorem 6:2:1 in
Fleming and Harrington, 1991) implies that, the null (H0) asymptotic distribution of
the random vector N−1=2(WLR1;WLR2; : : : ;WLRk−1) is the (k−1)-variate normal with
mean zero and covariance matrix �= {�ij}, where, for i = 1; 2; : : : ; k − 1;

�ii =
∫ ∞

0
kii(t){1−��(t)} d�(t); (A.1)

and, for i¡ j = 2; : : : ; k − 1;

�ij =


−

∫ ∞

0
ki+(t){1−��(t)} d�(t) if i = j − 1;

0 otherwise;
(A.2)
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with ��(t)=�(t)−��(t−). The unbiased and consistent estimators of N�ii and N�ij
are then given by sii and sij stated in Eqs. (2.2) and (2.3), respectively. Under the as-
sumption of equal censoring, that is, Ci=C; i=1; 2; : : : ; k; we obtain, for i=1; 2; : : : ; k−1;

�ii =
pipi+1
pi + pi+1

∫ ∞

0
!2i (t)G(t)dF(t) (A.3)

and, for i¡ j = 2; 3; : : : ; k − 1;

�ij =
−pipi+1pi+2

[pi + pi+1][pi+1 + pi+2]

∫ ∞

0
!i(t)!i+1(t)G(t) dF(t); (A.4)

if i = j − 1, and 0, otherwise, where F(t) = 1− S(t) and G(t) = 1− C(t).

A.2. Asymptotic null distribution of N−1=2 (WKM1; WKM2; : : : ; WKMk−1)

When S1 = S2 = · · · = Sk = S, the weighted Kaplan–Meier statistic WKMi can be
expressed as

WKMi =
∫ Tc

0
Ŵ i(t) d{Ŝ i+1(t)− Ŝ i(t)}

where Ŵi(t) =
√
nini+1

∫ Tc
t ŵi(u)S(u) du is a predictable weight function. Applying

Lemma 2:4:1 in Fleming and Harrington (1991), the martingale representation of
N−1=2WKMi is given by∫ Tc

0
Hi(t) dMi(t)−

∫ Tc

0
Hi+1(t) dMi+1(t)

+

√
nini+1
N

∫ Tc

0

{∫ Tc

t
ŵi(u)S(u) du

}
d
{
Bi+1(t)− Bi(t)

S(t)

}
(A.5)

where

Hi(t) =

√
nini+1
N

{∫ Tc

t
ŵi(u)S(u) du

}
Ŝ i(t)
S(t)

I{Yi(t)¿ 0}
Yi(t)

and

Bi(t) = I{Tc¡t} Ŝ i(Tc){S(Tc)− S(t)}
S(Tc)

:

Since the last term in (A.5) converges to zero in probability as N → ∞, we observe

N−1=2 WKMi =
∫ Tc

0
Hi(t) dMi(t)−

∫ Tc

0
Hi+1(t)dMi+1(t) + op(1):

Suppose that Yi(t)=ni
p→ �i(t) and ŵi(t)

p→wi(t) uniformly for i = 1; 2; : : : ; k − 1. Then,
H 2i (t)Yi(t)

p→ hi(t) uniformly, where

hi(t) = pi+1

{∫ �

t
wi(u)S(u) du

}2 S2i (t)
S2(t)

1
�i(t−) ; i = 1; 2; : : : ; k − 1:

Hence, the Martingale Central Limit Theorem implies that, the null (H0) asym-
ptotic distribution of the random vector N−1=2(WKM1;WKM2; : : : ;WKMk−1) is the
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(k − 1)-variate normal with mean zero and covariance matrix 	 = {�ij}, where for
i = 1; 2; : : : ; k − 1,

�ii =
∫ �

0

{∫ �

t
wi(u)S(u) du

}2 pi�i(t−) + pi+1�i+1(t−)
�i(t−)�i+1(t−) {1−��(t)} d�(t);

(A.6)

and for i¡ j = 2; 3; : : : ; k − 1

�ij =
∫ �

0

√
pipi+2

{∫ �

t
wi(u)S(u) du

}{∫ �

t
wi+1(u)S(u) du

}

× 1
�i+1(t−){1−��(t)} d�(t); (A.7)

if i= j− 1 and 0, otherwise. Consistent estimators of N�ii and N�ij are then obtained
as stated in (3.2) and (3.4), respectively. Assume that Ci = C; i = 1; 2; : : : ; k. Let
�= sup{t: min(S(t); G(t))¿0}, where G(t) = 1−C(t). For the weight function given
in (3.3), we obtain for i = 1; 2; : : : ; k − 1,

�ii =
1

pi + pi+1

∫ �

0

{∫ �

t
G(u)S(u) du

}2 dF(t)
S(t)S(t−)G(t−) (A.8)

and for i¡ j = 2; 3; : : : ; k − 1,

�ij =
−√

pipi+2
(pi + pi+1)(pi+1 + pi+2)

∫ �

0

{∫ �

0
G(u)S(u) du

}2 dF(t)
S(t)S(t−)G(t−) ; (A.9)

if i = j − 1, and 0, otherwise.
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