
Survival Analysis Take-home Midterm

R Data introduction:

Kardaun (1983) reports data on 90 males diagnosed with cancer of the larynx during the period

1970V1978 at a Dutch hospital. Times recorded are the intervals (in years) between first treatment

and either death or the end of the study (January 1, 1983). Also recorded are the patients age at

the time of diagnosis, the year of diagnosis, and the stage of the patients cancer. The four stages

of disease in the study were based on the T.N.M. (primary tumor (T ), nodal involvement (N) and

distant metastasis (M) grading) classification used by the American Joint Committee for Cancer

Staging (1972). The four groups are Stage I, T1N0M0 with 33 patients; Stage II, T2N0M0 with 17

patients; Stage III, T3N0M0 and TxN1M0, with 27 patients; x = 1, 2, or 3; and Stage IV, all other

TNM combinations except TIS with 13 patients. The stages are ordered from least serious to most

serious.

R I. Parametric model

1. Fit a Weibull model to the data including only one variable, disease stage. Find

the MLEs of λ and α and their standard errors. Plot the survival functions for the

patients of all four stages in one figure.

(i) ANOVA Table for µ̂, σ̂, and γ̂i, i=1,2,3

Parameter Standard
Variables df Estimates Error Chi-Square p-Value

Intercept(µ̂) 1 2.3691 0.2396
Scale(σ̂) 1 0.8846 0.1082

Stage II(γ̂1) 1 -0.0868 0.4049 -0.214 8.30e-01
Stage III(γ̂2) 1 -0.5566 0.3186 -1.747 8.06e-02
Stage IV(γ̂3) 1 -1.5786 0.3632 -4.346 1.38e-05

The fitted model is

Y = log X = µ̂ + γ̂T Z + σ̂W = 2.3691− 0.0868Z1 − 0.5566Z2 − 1.5786Z3 + 0.8846W



where γ = (γ1, γ2, γ3) , Z = (Z1, Z2, Z3) and

Z1 = 1 if the patient is in stage II, 0 otherwise,

Z2 = 1 if the patient is in stage III, 0 otherwise,

Z3 = 1 if the patient is in stage IV, 0 otherwise.

The covariance matrix of µ̂, γ̂ and log σ̂ is

Σ̂ =




0.0574 −0.0519 −0.0563 −0.0589 0.0088
−0.0519 0.1640 0.0520 0.0519 0.0004
−0.0563 0.0520 0.1015 0.0575 −0.0070
−0.0589 0.0519 0.0575 0.1319 −0.0114

0.0088 0.0004 −0.0070 −0.0114 0.0150




.

Let f1 (x, y, z, w, v) = (x, y, z, w, ew) then ḟ1 (x, y, z, w, v) =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 ew




, that is,

ḟ1 (µ̂, γ̂1, γ̂2, γ̂3, log σ̂) =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 σ̂




.

So the covariance matrix of µ̂, γ̂ and σ̂ is

Σ̂1 = ḟ1 (µ̂, γ̂1, γ̂2, γ̂3, log σ̂) Σ̂ḟ1 (µ̂, γ̂1, γ̂2, γ̂3, log σ̂)t

=




0.0574 −0.0519 −0.0563 −0.0589 0.0078
−0.0519 0.1640 0.0520 0.0519 0.0004
−0.0563 0.0520 0.1015 0.0575 −0.0062
−0.0589 0.0519 0.0575 0.1319 −0.0100

0.0078 0.0004 −0.0062 −0.0100 0.0117




So the ANOVA Table for λ̂, β̂i, i = 1, 2, 3, and α̂

Parameter Standard
Variables df Estimates Error Chi-Square p-Value

Intercept(λ̂) 1 0.0687 0.0245
Scale(α̂) 1 1.1305 0.1383

Stage II(β̂1) 1 0.0981 0.4580 0.0459 0.8304

Stage III(β̂2) 1 0.6293 0.3544 3.1517 0.0758

Stage IV(β̂3) 1 1.7845 0.4128 18.6853 1.5416e-05

where λ = e−µ/σ, α = 1/σ and βi = −γi/σ, i = 1, 2, 3.



Let f2 (x, y, z, w, v) =
(
e−x/v,−y/v,−z/v,−w/v, 1/v

)
then

ḟ2 (x, y, z, w, v) =




− 1
v
e−x/v 0 0 0 x

v2 e
−x/v

0 − 1
v

0 0 y
v2

0 0 − 1
v

0 z
v2

0 0 0 − 1
v

w
v2

0 0 0 0 − 1
v2




⇒ ḟ2 (µ̂, γ̂1, γ̂2, γ̂3, σ̂) =




− 1
σ̂
e−µ̂/σ̂ 0 0 0 µ̂

σ̂2 e
−µ̂/σ̂

0 − 1
σ̂

0 0 γ̂1

σ̂2

0 0 − 1
σ̂

0 γ̂2

σ̂2

0 0 0 − 1
σ̂

γ̂3

σ̂2

0 0 0 0 − 1
σ̂2




So the covariance matrix of λ̂, α̂ and β̂i, i = 1, 2, 3 is

Σ̂2 =




0.0006 −0.0048 −0.0048 −0.0065 −0.0023
−0.0048 0.2098 0.0669 0.0685 0.0022
−0.0048 0.0669 0.1256 0.0680 0.0017
−0.0065 0.0685 0.0680 0.1704 0.0157
−0.0023 0.0022 0.0017 0.0157 0.0191




.

(ii) The plot of the survival functions for the patients of all four stages are shown in figure 1. The

survival probabilities for the patients of stage I and II are similarly and the highest survival

probability is the patients of stage I. This means the patients of stage I have the longer survival

time than the remainder. On the other hand, the patients of stage IV have the smallest survival

probability. And the survival curves of stage III and IV are different clearly form those of stage I

and stage II. And all survival probabilities of the patients of the four stages are going decreased

by time. That is a normal situation in the fact. Finally, we tend to believe that there is a dis-

crepancy for the patients of stage IV and the remainder, and the stage III is.
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Figure 1: The survival functions for the patients of all four stage.

2. Find the MLEs of the median survival for disease stage 1 and 4 patients. Use the

delta method to find the corresponding standard errors.

Since the model is Weibull distribution, the survival function is

S(x|Z) = exp
{
−x1/σe−

γtZ+µ
σ

}
= exp

{
−λxαeβtZ

}

0.5 = S(x0.5|Z) = exp
{
−λxα

0.5e
βtZ

}

⇒ x0.5 =

(
log 2

λ
e−βtZ

)1/α

,

where λ = exp {−µ/σ} , α = 1/σ and βi = −γi/σ, i = 1, 2, 3.



Let f3 (x, y, z, w, v) =
(

log 2
x

eyZ1+zZ2+wZ3
)1/v

then ḟ3 (x, y, z, w, v) = (g1, g2, g3, g4, g5), where

g1 = −
(

e−(yZ1+zZ2+wZ3) log 2

x

)1/v−1
e−(yZ1+zZ2+wZ3) log 2

x2v

g2 = −
(

e−(yZ1+zZ2+wZ3) log 2

x

)1/v−1
Z1e

−(yZ1+zZ2+wZ3) log 2

xv

g3 = −
(

e−(yZ1+zZ2+wZ3) log 2

x

)1/v−1
Z2e

−(yZ1+zZ2+wZ3) log 2

xv

g4 = −
(

e−(yZ1+zZ2+wZ3) log 2

x

)1/v−1
Z3e

−(yZ1+zZ2+wZ3) log 2

xv

g5 = −
(

e−(yZ1+zZ2+wZ3) log 2

x

)1/v

log

(
e−(yZ1+zZ2+wZ3) log 2

x

)
1

v2

So the covariance of x̂0.5 is

var(x̂0.5) = ḟ3

(
λ̂, β̂1, β̂2, β̂3, α̂

)
Σ̂2ḟ3

(
λ̂, β̂1, β̂2, β̂3, α̂

)t

.

(i) For stage I, Z = (0, 0, 0) and then the MLE of median survival and its variance are

x̂I
0.5 =

(
log 2

λ̂

)1/α̂

=

(
log 2

0.0687

)1/1.1305

= 7.7286

var(x̂0.5) =

(
−

(
log 2

λ̂

)1/α̂−1
log 2

α̂λ̂2
, 0, 0, 0,−

(
log 2

λ̂

)1/α̂

log

(
log 2

λ̂

)
1

α̂2

)
Σ̂2

(
−

(
log 2

λ̂

)1/α̂−1
log 2

α̂λ̂2
, 0, 0, 0,−

(
log 2

λ̂

)1/α̂

log

(
log 2

λ̂

)
1

α̂2

)t

= 3.1796,

where Σ̂2, λ̂, β̂i, i = 1, 2, 3 and α̂ are defined in problem 1. Thus, the standard error of MLE of

the median survival for disease stage I is se(x̂I
0.5) = 1.7832.

(ii) For stage IV, Z = (0, 0, 1) and then the MLE of median survival and its variance are

x̂IV
0.5 = (K)1/α̂ = 1.5942

var(x̂IV
0.5) =

(
−K1/α̂−1 K

α̂λ̂
, 0, 0,−K1/α̂−1K

α̂
,−K1/α̂ log K

1

α̂2

)
Σ̂2

(
−K1/α̂−1 K

α̂λ̂
, 0, 0,−K1/α̂−1K

α̂
,−K1/α̂ log K

1

α̂2

)t

= 0.1907



where K = log 2

λ̂
e−β̂3 = 1.6942. Thus, the standard error of MLE of the median survival for disease

stage IV is se(x̂IV
0.5) = 0.4366.

3. Test the hypothesis that the death rates the same for the patients of all four

stages.

For Weibull distribution,

S(x|Z) = P

(
W >

log x− γtZ − µ

σ
|Z

)

= P

(
eW > exp

{
log x− γtZ − µ

σ

})

= exp
{
−x1/σe−

γtZ−µ
σ

}

−f(x|Z) =
d

dx
S(x|Z) = − 1

σ
x1/σ−1 exp

{
−γtZ + µ

σ

}
S(x|Z)

⇒ f(x|Z) =
1

σ
x1/σ−1 exp

{
−γtZ + µ

σ

}
S(x|Z)

h(x|Z) =
f(x|Z)

S(x|Z)
=

1

σ
x1/σ−1 exp

{
−γtZ + µ

σ

}

and the fitted model is

Y = log X = µ̂+ γ̂1Z1 + γ̂2Z2 + γ̂3Z3 + σ̂W = 2.3691− 0.0868Z1− 0.5566Z2− 1.5786Z3 +0.885W.

Testing the death rates are the same for the patients of all four stages that we can take the

hypotheses H0 : h(t|Z0) = h(t|Z1) = h(t|Z2) = h(t|Z3) vs. H1 :At least one of h(t|Zi) is

different, i = 0, 1, 2, 3, where Z = (Z1, Z2, Z3) and

Z0 = (Z1, Z2, Z3) = (0, 0, 0)

Z1 = (Z1, Z2, Z3) = (1, 0, 0)

Z2 = (Z1, Z2, Z3) = (0, 1, 0)

Z3 = (Z1, Z2, Z3) = (0, 0, 1) .

The testing hypotheses in the above is the same as testing H0 : γ1 = γ2 = γ3 = 0 vs. H1 : γi 6=
0, i = 1, 2, 3.

Define the contrast matrix C =




1 0 0
0 1 0
0 0 1


.



Thus, the testing hypotheses becomes H0 : Cγ = 0 vs. H1 : Cγ 6= 0 with γ = (γ1, γ2, γ3)
t. So

the variance of Cγ is

var(Cγ) = Cvar(γ)Ct = var(γ)

=




0.1640 0.0520 0.0519
0.0520 0.1015 0.0575
0.0519 0.0575 0.1319




and hence, the test statistic is

X2
W = (Cγ̂) [var(Cγ̂)]−1 (Cγ̂)t = 20.8814

with X 2
3 distribution and its corresponding p-value is 0.0001. Since the p-value < 0.05, we reject

H0 at significant level 0.05, that is, we know that the death rates are different for the patients

of all four stages. This result is the same as (ii) in problem 1 which obtained by the survival

functions for the patients of all four stages in figure 1.

4. Fit all possible parametric models (exponential, Weibull, log normal, and log

logistic) including only one variable, disease stage. Use all the graphic techniques

you learn in the class to determine which model is appropriate to the data.

For all possible parameter models (exponential, Weibull, log normal, and log logistic), the fitted

models are

Y = log X = 2.4476− 0.0827Z1 − 0.6164Z2 − 1.6758Z3 + W

Y = log X = 2.3691− 0.0868Z1 − 0.5566Z2 − 1.5786Z3 + 0.885W

Y = log X = 2.188− 0.228Z1 − 0.889Z2 − 1.906Z3 + 1.27W

Y = log X = 2.107− 0.115Z1 − 0.784Z2 − 1.780Z3 + 0.714W,

respectively. And the hazard plots for all possible parameter models are as follows
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(b) Weibull Hazard Plot
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(c) Log Normal Hazard Plot

Log Time

E
st

im
at

ed
 P

ro
ba

bi
t(

1−
E

xp
(−

H
))

Stage I
Stage II
Stage III
Stage IV

−2 −1 0 1 2

−
4

−
3

−
2

−
1

0
1

2

(d) Log Logistic Hazard Plot

Log Time

E
st

im
at

ed
 L

n(
E

xp
(H

) 
−

 1
) Stage I

Stage II
Stage III
Stage IV

Figure 2: The hazard plot for all possible parameter models.

For all plots in figure 2, both death risks for the patients between stage I and stage II are closed

to each other. Furthermore, the patients of stage IV have the highest death risk no mater for any

possible parameter models. Also, the hazard plot for the patients of all four stages in figure 2(a)

is similar to be a linear before the survival time 7.5 months and its tail is horizontal for stage

I-III. However, we can still claim this plot to be linear. Except plot in figure 2(a). the rest plots

are approximate to be a linear. Therefore, the hazard plots, all of which should be linear, suggest

that any of the models would be reasonable. Thus, we try to plot the Cox-Snell residuals plot to

determine which model is suitable.
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Figure 3: The hazard plot for all possible parameter models.

The Cox-Snell residual, rj, is defined by rj = Ĥ(Tj|Zj), where Ĥ is the fitted model. If the model

fits the data then the rj’s should have a certain distribution, so that a hazard plot of rj versus

the Nelson-Aalen estimator of the cumulative hazard of the rj’s should be a straight line with

slope 1 where the Cox-Snell residuals for the four models considered are

Exponential ri = λ̂tj exp
{

β̂tZi

}

Weibull ri = λ̂ exp
{

β̂tZi

}
tα̂j

Log normal ri = log

{
1− Φ

(
log Tj − µ̂− γ̂tZi

σ̂

)}

Log logistic ri = log





1

1 + λ̂ exp
{

β̂tZi

}
tα̂j



 .

Thus we see that both exponential and weibull distributions are closed to a straight line in the

figure 3. Although the rest of models (log normal and log logistic) are also closed to a straight

line, both of their slopes are not equal to 1 (the red line in the figure 4 means a straight line

with slope 1). So we attend to believe that exponential or weibull model is appropriate to the

data. But using exponential distribution to fit the model is much better than weibull distribution

because we only estimate an unknown parameter by using exponential distribution.



5. Repeat question 4 but including all variables of the data. Use the Cox-Snell

residuals plot to determine a suitable model for the data.
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Figure 4: The hazard plot for all possible parameter models.

Figure 4 is the Cox-Snell residuals plot with including all variables of the data and the red line

means a straight line with slope 1. We can obtain the same result as problem 4 form the above

figure. That is, both exponential and weibull models are closed to a straight line with slope

1. Although the log normal and log logistic models are closed to a straight line, the slopes of

those straight lines are not equal to 1. Furthermore, we have to estimate the number of unknown

parameters for the exponential model are less than the weibull model needed. Hence, we tend to

believe the exponential model is a suitable model for the data.

6. Perform statistical method to find a best model from question 6.

First, we compare the fit of the exponential, Weibull, log normal, and generalized gamma models

for the data on the laryngeal cancer. We fit the log linear model

Y = log X = µ +
5∑

k=1

γkZk + σW,



where we have five covariates:

Z1 : 1if Stage II cancer, 0 otherwise,

Z2 : 1if Stage III cancer, 0 otherwise,

Z3 : 1if Stage IV cancer, 0 otherwise, and

Z4 : Patient’s age at diagnosis,

Z5 : the year of diagnosis.

We use SAS PORC LIFEREG to fit the exponential, Weibull, log normal, and generalized gamma

models and their output in the table as follows:

Table: Parameteric Models for the Laryngeal Cancer Study
Exp. Weibull Log Normal Log Logistic G. Gamma

Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE
µ 1.18 5.37 2.11 4.92 0.52 5.52 2.08 5.47 1.39 5.42
γ1 -0.17 0.46 -0.16 0.41 -0.25 0.46 -0.14 0.43 -0.19 0.45
γ2 -0.65 0.36 -0.59 0.32 -0.93 0.37 -0.82 0.36 -0.79 0.41
γ3 -1.70 0.42 -1.59 0.40 -1.94 0.47 -1.80 0.46 -1.80 0.49
γ4 -0.02 0.01 -0.02 0.01 -0.02 0.01 -0.01 0.01 -0.02 0.01
γ5 0.03 0.07 0.09 0.07 0.04 0.07 0.01 0.07 0.03 0.07
σ 1.00 0 0.89 0.11 1.27 0.14 0.72 0.09 1.13 0.26
θ 0.42 0.60

Log L -108.38 -107.98 -107.85 -108.17 -107.60
AIC 228.76 229.97 299.71 230.35 231.21

In the above table, we see that all models fit equally well. The exponential model has the smallest

AIC and, in the sense, is the best fitting model. For this model,

Y = log X = 1.1782− 0.1722Z1 − 0.6536Z2 − 1.7015Z3 − 0.0191Z4 + 0.0346Z5 + W.

The negative values of the coefficients of Z1−Z4 in the log linear model suggest that the individuals

with stage II-IV cancer have shorter lifetimes than individuals with stage I disease. Also, grey-

haired patients at diagnosis have shorter lifetimes than young patients. A second model of interest

is the generalized gamma distibution. For this model, Y = log X follows the linear model

Y = log X = µ + γtZ + σW

with W having the following probability density function

f(w) =
|θ| [exp (θw) /θ2]

1/θ2

exp [− exp (θw) /θ2]

Γ(1/θ2)
, −∞ < w < ∞.



When θ equals 1, this model reduces to the Weibull regression model, and when θ is 0, the model

reduces to the log normal distribution. When θ = 1 and σ = 1 in the linear model, then it

reduces to the exponential regression model. Wald or likelihood ratio tests of the hypotheses that

θ = 1 or θ = 0 provid a means of checking the assumption of a Weibull or log normal regression

model, respectively. Thus, we can test θ = 1 and σ = 1, that is, H0 : θ = 1, σ = 1 vs. H1 : At

least one is false. Then the Wald test statistic is

X2
W =

[
θ̂GG − 1
σ̂GG − 1

]t

Σ̂GG

[
θ̂GG − 1
σ̂GG − 1

]
= 0.0489

and its p-value is 0.9758>0.05 where θGG and σGG are the fitted values for the generalized gamma

model

Σ̂GG =

[
0.067314 −0.137374

−0.137374 0.357744

]

is the covariance matrix of θ̂ and σ̂ for the generalized gamma model. That means we do not reject

H0 at significant level 0.05, that is, we attend to believe that θ = 1 and σ = 1 and Hence, we

prefer the exponential model to be a best model for the data on laryngeal cancer.

7. Perform model selection for your best model from question 6.

The objective of AIC model selection is to estimate the information loss when the probability

distribution f associated with the true (generating) model is approximated by probability dis-

tribution g, associated with the model that is to be evaluated. Akaike (1973; Bozdogan, 1987)

has shown that choosing the model with the lowest expected information loss is asymptotically

equivalent to choosing a model Mi, i = 1, 2, · · · , K that has the lowest AIC value. The AIC is

defined as

AIC = −2 ∗ log (Likelihood) + 2 (p + k) ,

where the p+k is free parameters in such a way as to maximize the probability that the candidate

model has generated the observed data.

Despite the widespread use of the AIC, some believe that it is too liberal and tends to select overly

complex models. 1995). It has been pointed out that the AIC neglects the sampling variability

of the estimated parameters. When the likelihood values for these parameters are not highly

concentrated around their maximum value, this can lead to overly optimistic assessments. Fur-

thermore, the AIC is not consistent. That is, as the number of observations n grows very large,



the probability that the AIC recovers a true low-dimensional model does not approach unity. A

popular alternative model selection criterion is the Bayesian information criterion or BIC. The

BIC for model i is defined as

BIC = −2 ∗ log (Likelihood) + log n/2

where n is the number of observations that enter into the likelihood calculation. In contrast to

the AIC, the BIC is consistent as n →∞ and does take parameter uncertainty into account.

A comparison of BIC and AIC shows that the BIC penalty term is larger than the AIC penalty

term when n > e2. Although the equations of AIC and BIC look very similar, they originate

from quite different frameworks. The BIC assumes that the true generation model is in the

set of candidate models,and it measures the degree of belief that a certain model is the true

data-generating model. The AIC does not assume that any of the candidate models is necessarily

true.And for the forward step, the BIC contains a few model parameters than AIC does. Thus, we

follow the BIC to perform model selection for the best model from problem 6.

First step: The BIC for the model selection.
Model BIC

Y = log X = µ + W 237.6908
Y = log X = µ + γ1Z1 + W 236.5680
Y = log X = µ + γ2Z2 + W 236.8570
Y = log X = µ + γ3Z3 + W 224.4834
Y = log X = µ + γ4Z4 + W 234.8472
Y = log X = µ + γ5Z5 + W 237.6202

We want to choose the smallest value of BIC. So, from the above table, the smallest BIC occurs

in the model Y1 = µ + γ3Z3 + W . Again, we consider the other covariate into the model Y1 and

compute the BIC values.

Second step: The BIC for the model selection.
Model BIC

Y = log X = µ + γ3Z3 + W 224.4834
Y = log X = µ + γ1Z1 + γ3Z3 + W 224.2495
Y = log X = µ + γ2Z2 + γ3Z3 + W 221.2630
Y = log X = µ + γ3Z3 + γ4Z4 + W 222.7064
Y = log X = µ + γ3Z3 + γ5Z5 + W 224.1159

From the table of the second step, the model Y2 = µ + γ2Z2 + γ3Z3 + W is better model than the



model Y1.

Third step: The BIC for the model selection.
Model BIC

Y = log X = µ + γ2Z2 + γ3Z3 + W 221.2630
Y = log X = µ + γ1Z1 + γ2Z2 + γ3Z3 + W 221.0687
Y = log X = µ + γ2Z2 + γ3Z3 + γ4Z4 + W 219.3505
Y = log X = µ + γ2Z2 + γ3Z3 + γ5Z5 + W 220.9023

From the table of the third step, the model Y3 = µ + γ2Z2 + γ3Z3 + γ4Z4 + W is better than the

model Y2. By the same argument, we put the covariate into the model Y3 and compute the BICs.

Fourth step: The BIC for the model selection.
Model BIC

Y = log X = µ + γ2Z2 + γ3Z3 + γ4Z4 + W 219.3505
Y = log X = µ + γ1Z1 + γ2Z2 + γ3Z3 + γ4Z4 + W 219.2522
Y = log X = µ + γ2Z2 + γ3Z3 + γ4Z4 + γ5Z5 + W 219.1502

Since all the values of BIC in the table of the fourth step are similar, we will not add any covaraite

into the model Y3. Hence, we preform the model Y3 = µ + γ2Z2 + γ3Z3 + γ4Z4 + W is the best

model for the data on the laryngeal cancer.

8. Interpret your final model. Write your answer as much as you can.

The best fitted model in problem 7 is

Y = 3.6812− 0.6038Z2 − 1.5925Z3 − 0.0193Z4.

The negative values of the coefficients of Z2 and Z3 in the log linear model suggest that individuals

with stages III and IV cancer have shorter lifetimes than individuals without stage III or stage

IV disease. Also, the negative values of the coefficient of Z4 (age) in the log linear model means

that there has shorter lifetimes with the advanced age than with the young age and the lifetimes

decreases 0.0193 years when patient’s age at diagnosis increases one month. On the other hand, the

hazard function of the exponential model is

h(t|Z∗) = exp {− (γ∗Z∗ + µ)}

where γ̂∗ = (−0.6038,−1.5925,−0.0193)t and Z∗ = (Z2, Z3, Z4)
t.SO, we can compare the relative

risk of death between the patients at stage III cancer and at stage IV cancer. Then,the point



estimator of the relative risk of death for the stage III cancer as compared to a stage IV cancer is

ĥ(t|Z2 = 1, Z3 = 0, Z4 = c)

ĥ(t|Z2 = 0, Z3 = 1, Z4 = c)
=

exp {−γ̂∗2 − cγ̂∗4}
exp {−γ̂∗3 − cγ̂∗4}

= exp {γ̂∗3 − γ̂∗2} = exp {−1.5925 + 0.6038}
= 0.3721

where the patient’s age at disease is fixed at a constant c. This means the death risk for the

patients of stage III cancer is 0.3721 times for the patients of stage IV cancer under the same

age at disease, that is, there has the higher death risk in stage IV cancer than in stage III

cancer. Next, we also can obtain the 95% confidence interval of the relative risk of death by using

the delta method. Thus, the covariance matrix of γ̂∗2 and γ̂∗3 is

Σ̂∗ =

[
0.1044 0.0449
0.0449 0.1387

]
.

Then the point estimate of γ∗3 − γ∗2 is equal to γ̂∗3 − γ̂∗2 = −0.9887 and its relative variance of

γ̂∗3 − γ̂∗2 is

var (γ̂∗3 − γ̂∗2) = var(γ̂∗2)− 2 ∗ cov(γ̂∗2 , γ̂
∗
3) + var(γ̂∗3) = 0.1533.

So the 95% confidence interval for γ∗3 − γ∗2 is

γ̂∗3 − γ̂∗2 ± 1.96
√

var (γ̂∗3 − γ̂∗2) = −0.9887± 1.96 ∗ 0.3916 = (−1.7561,−0.2212) .

Hence, the 95% confidence interval for the relative risk of death for the stage III cancer as

compared to a stage IV cancer is

(
exp

{
γ̂∗3 − γ̂∗2 − 1.96

√
var (γ̂∗3 − γ̂∗2)

}
, γ̂∗3 − γ̂∗2 + 1.96

√
var (γ̂∗3 − γ̂∗2)

)
= (0.1727, 0.8015) .

This means we have 95% confidence level to see that the death risk for the patients of stage III

cancer is between 0.1727 and 0.8015 times for the patients of stage IV cancer.

From the all above results, we know that if the lifetimes of an individual’s advanced age at disease

will be shorter than other young person under the same stage level. And the patients of stage IV

cancer will have shorter lifetime than stage III cancer if the patient’s age at disease is fixed, that

is, the patients of stage IV cancer has higher death risk than stage III cancer and their relative

risk of death is about 0.3217.



R II. Nonparametric model

9. Obtain the Kaplan-Meier estimates of survival functions for the patients of four

stages and perform a test to find if there are differences in survival among the

four stages. Make a brief conclusion for both graphs and the test.

(i) The plot of the Kaplan-Meier estimates of survival functions for the patients of four stages

shows that the survival probabilities for the patients between stage I and II are similar. Further-

more, their survival probabilities are identical after four months. On the other hand, the stage

III and stage IV have smaller survival probability than stage I and II. And there is a discrepancy

survival probabilities for the patients between stage (III, IV) and stage (I, II). Also, the plot in

the below shows that the patients of stage IV have the smallest survival probability.
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Figure 5: The survival functions for the patients of all four stage using Kaplan-Meier estimation.

(ii) So we can test the differences in survival among the four stages by the log rank test. That

is, testing the hypotheses H0 : SI(t0) = SII(t0) = SIII(t0) = SIV (t0) vs. H1 : at least one of the

Sj(t0) is different. First, we take the weight Wki
= ni (Gehan-Wilcoxon) then the test statistic is

X2
GW = 22.8 ∼ X 2

3 and its p-value is 4.53e− 05 < 0.05.



This means we reject H0 at significant level 0.05. We see that at least one of Sj(t0) is different at

significant level 0.05. So there are differences in survival among the four stages. Second, we try

to take the weight Wki
= Ŝ(ti) (Peto) then the test statistic is

X2
Peto = 23.1 ∼ X 2

3 and its p-value is 3.85e− 05 < 0.05.

This has the same result, rejects H0 at significant level 0.05, as taking the weight Wki
=

ni. Hence, we know that there are differences in survival among the four stages.

10. Find Nair’s cα(aL, AU) and Hall-Wellners’ kα(aL, aU) for overall survival time period.

Define

aL =
nσ2

s(tL)

1 + nσ2
s(tL)

and

aU =
nσ2

s(tU)

1 + nσ2
s(tU)

,

where σ2
s(t) =

∑
ti≤t = di

Yi(Yi−di)
and Yi means the number of individuals who are at risk at time

ti, di means the number of events (sometimes simply referred to as deaths) at time ti. Also we

compute aL and aU and use the interpolation to obtain cα(aL, aU) and kα(aL, aU). So the out-

comes are as follows:

Stage Time Nair’s Hall-Wellner’s
(tL, tU) (aL, aU) cα(aL, aU) kα(aL, aU)

I (0.6, 7.4) (0.03,0.72) 3.0595 1.3501
II (0.2, 7.0) (0.06,0.74) 3.0059 1.3525
III (0.3,7.8) (0.07,0.83) 3.0377 1.3576
IV (0.1,3.8) (0.08,0.92) 3.0892 1.3581

11. Use nonparametric method to obtain the point estimates and confidence intervals

for the mean and median survival time of the four stages patients. Make a brief

interpretation on the median survival time.

(i) The estimated mean restricted to the interval [0, τ ], with τ either the longest observed time

or preassigned by the investigator, is given by

µ̂τ =

∫ τ

0

Ŝ(t)dt.



The variance of this estimator is

V̂ (µ̂τ ) =
D∑

i=1

[∫ τ

0

Ŝ(t)dt

]2
di

Yi(Yi − di)

where the definitions of Yi and di are the same as problem 10. A 100(1−α)% confidence interval

for the mean is expressed by

µ̂τ ± Z1−α/2

√
V̂ (µ̂τ ).

Here, we use R program to obtain the point estimates and confidence intervals for the mean of

the four stages and the codes are I-10 in the Appendix.

95% confidence
Disease Stage Mean variance Standard Error interval

I 7.0833 0.4309 0.6565 (5.7966,8.3699)
II 6.8668 1.0354 1.0176 (1.8724,8.8612)
III 5.1272 0.6481 0.8050 (3.5494,6.7051)
IV 2.5641 0.7830 0.8849 (0.8298,4.2984)

(ii) Define xp = inf {t : S(t) ≤ 1− p}, that is, xp is the smallest time at which the survival

function is less than or equal to 1− p. To estimate xp, we find the smallest time x̂p for which the

Product-Limit estimator is less than or equal to 1 − p. That is, x̂p = inf
{

t : Ŝ(t) ≤ 1− p
}

. So

a 100(1− α)% confidence interval for xp, based on the linear confidence interval, is the set of all

time points t which satisfy the following condition:

−Z1−α/2 ≤ Ŝ(t)− (1− p)

V̂ 1/2
[
Ŝ(t)

] ≤ Z1−α/2.

Thus, we can obtain the point estimates and confidence interval for the median survival time of

the four stages patients as follows

95% confidence
Disease Stage x̂0.5 interval

I 6.5 (5.3,∞)
II 7.0 (4.0,∞)
III 5.0 (1.8,6.4)
IV 1.5 (0.8,2.3)

Again, the above results are computed by R program and the codes and complete outputs are

I-11 in the Appendix.



R Appendix

I-1

##Fit a Weibull model to the data including only one variable, disease variable

fit1 = survreg(Surv(futime, fustat) ~ factor(stage), dist = "weibull")

time = 1 : 50

z1 = c(1, 0, 0, 0) ; z2 = c(1, 1, 0, 0)

z3 = c(1, 0, 1, 0) ; z4 = c(1, 0, 0, 1)

##To compute the survival functions of all four stages

gamma.z1 = sum(z1 * fit1 $ coef) ; gamma.z2 = sum(z2 * fit1 $ coef)

gamma.z3 = sum(z3 * fit1 $ coef) ; gamma.z4 = sum(z4 * fit1 $ coef)

arg1 = time * exp(-gamma.z1) ; arg2 = time * exp(-gamma.z2)

arg3 = time * exp(-gamma.z3) ; arg4 = time * exp(-gamma.z4)

alpha.1 = (fit1 $ scale) ^ (-1)

surv.1 = exp(-arg1 ^ alpha.1) ; surv.2 = exp(-arg2 ^ alpha.1)

surv.3 = exp(-arg3 ^ alpha.1) ; surv.4 = exp(-arg4 ^ alpha.1)

##According the above result to plot survival functions of four stages in one figure

##The lines of stage III and IV are similar to lines(...)

plot(time, surv.1, xlab = "time", ylab = "survival function

for Weibull distribution", type = "l", ylim = c(0, 1))

lines(time, surv.2, lty = 2, col = 2)

I-2

##To compute MLEs of the median survival for stage I and IV

alpha.1 = 1 / fit1 $ scale ; lambda.1 = exp(-fit1 $ coef[1] / fit1 $ scale)

beta.1 = as.matrix(-fit1 $ coef[-1] / fit1 $ scale)

z.1 = c(0, 0, 0) ; z.4 = c(0, 0, 1)

median.1 = (log(2) * exp(-z.1 %*% beta.1) / lambda.1) ^ (1 / alpha.1)

median.4 = (log(2) * exp(-z.4 %*% beta.1) / lambda.1) ^ (1 / alpha.1)



##Use the programs deriv(....) and attr(eval(),"gradient") to apply the delta method

I-4

##Change dist="" to weibull, log normal and log logistic can fit different model

fit.exp = survreg(Surv(futime, fustat) ~ factor(stage), dist = "exponential")

##Computing the Kaplan-Meier estimator for each stage i.e. change "stage ==..."

fit.I = survfit(Surv(futime, fustat) ~ 1, data = larynx[stage == 1, ])

##plot the hazard rate for all stages

##the below program is to plot exponential and the rest omitted

plot(time.I, H1, type = "l", main = "(a) Exponential Hazard Plot", xlab = "Time",

ylab = "Estimated Cumulative Hazard", xlim = c(0, 11), ylim = c(0, 2.4))

lines(time.II, H2, lty = 2, col = 2)

lines(time.III, H3, lty = 3, col = 3, lwd = 2)

lines(time.IV, H4, lty = 4, col = 4)

I-5

##plot the Cox-snell residuals plot

##This is to fit exponential model and the rest are similar

fit.all.exp = survreg(Surv(futime, fustat) ~ factor(stage) + age + year

, dist = "exponential")

summary(fit.all.exp)

ri.exp = exp(log(futime) - (fit.all.exp $ linear.predictors) / fit.all.exp $ scale)

fh.surv.exp = survfit(Surv(ri.exp, fustat) ~ 1, type = "fleming-harrington") $ surv

cum.hz.exp = -log(fh.surv.exp)

s.exp = stepfun(sort(ri.exp), c(0, cum.hz.exp))

I-6 SAS Program

##Find the fitted model for all possible parametric models

##Only change DIST option to weibull lnormal llogistic



PROC LIFETIME;

MODEL FUTIME*FUSTAT(0)=Z1 Z2 Z3 AGE YEAR/DIST=EXPONENTIAL;

##Fit a model with generalized gamma

##COVB option is use to call the covariance matirx of all parameters

PROC LIFETIME;

MODEL FUTIME*FUSTAT(0)=Z1 Z2 Z3 AGE YEAR/DIST=GAMMA COVB;

I-9

##test to find if there are differences in survival among the four

##stages with different weight.rho=0 means wieght =ni and rho=1 means

##wieight=S(ti)

test0 = survdiff(Surv(futime, fustat) ~ factor(stage), rho = 0)

test1 = survdiff(Surv(futime, fustat) ~ factor(stage), rho = 1)

I-10

##computing the aL and aU for all four stages

km = function(data, stage, i)

{

km = summary(survfit(Surv(futime, fustat) ~ stage, data = data[stage == i, ]))

time = km $ time

y = km $ n.risk

d = km $ n.event

surv = km $ surv

##each time of d / (y * (y-d))

sigma.s = cumsum(d / (y * (y - d)))

temp = d / (y * (y - d))

v.s = surv ^ 2 * sigma.s

tL = time[1] ; tU = rev(time)[1]

##y[1] means the sample size for each stage

tempL = y[1] * sigma.s[1]



tempU = y[1] * rev(sigma.s)[1]

aL = tempL / (1 + tempL) ; aU = tempU / (1 + tempU)

output1 = cbind(time, d, y, surv, temp, sigma.s, v.s)

output2 = c(y[1], tL, tU, aL, aU)

return(list(prod.lim = output1, est = round(output2, 2)))

}

km1 = km(larynx, stage, 1)

km2 = km(larynx, stage, 2)

km3 = km(larynx, stage, 3)

km4 = km(larynx, stage, 4)

I-11 Tables of a 95% confidence interval for the median of all four stages

Table : stage I

ti Ŝ(ti)

√
V̂

[
Ŝ(ti)

]
Ŝ(ti)−(1−p)

V̂ 1/2[Ŝ(ti)]
0.6 0.9697 0.0298 15.7403
1.3 0.9394 0.0415 10.5786
2.4 0.9091 0.0500 8.1747
3.2 0.8777 0.0573 6.5922
3.3 0.8452 0.0637 5.4165
3.5 0.7776 0.0744 3.7293
4.0 0.7010 0.0819 2.5641
4.3 0.6762 0.0847 2.0804
5.3 0.6386 0.0879 1.5766
6.0 0.5930 0.0927 1.0030
6.4 0.5391 0.0987 0.3960
6.5 0.4852 0.1025 -0.1445
7.4 0.4043 0.1129 -0.8474



Table : stage II

ti Ŝ(ti)

√
V̂

[
Ŝ(ti)

]
Ŝ(ti)−(1−p)

V̂ 1/2[Ŝ(ti)]
0.2 0.9412 0.0571 7.7308
1.8 0.8824 0.0781 4.8930
2.0 0.8235 0.0925 3.4991
3.6 0.7487 0.1103 2.2549
4.0 0.6655 0.1255 1.3182
6.2 0.5324 0.1557 0.2079
7.0 0.3993 0.1641 -0.6137

Table : stage III

ti Ŝ(ti)

√
V̂

[
Ŝ(ti)

]
Ŝ(ti)−(1−p)

V̂ 1/2[Ŝ(ti)]
0.3 0.9259 0.0504 8.4507
0.5 0.8889 0.0605 6.4299
0.7 0.8519 0.0684 5.1465
0.8 0.8148 0.0745 4.2112
1.0 0.7778 0.0800 3.4718
1.3 0.7407 0.0843 2.8545
1.6 0.7037 0.0879 2.3180
1.8 0.6667 0.0907 1.8371
1.9 0.5926 0.0946 0.9792
3.2 0.5556 0.0956 0.5809
3.5 0.5185 0.0962 0.1926
5.0 0.4667 0.0995 -0.3349
6.3 0.4000 0.1053 -0.9496
6.4 0.3333 0.1068 -1.5606
7.8 0.2500 0.1078 -2.3188

Table : stage IV

ti Ŝ(ti)

√
V̂

[
Ŝ(ti)

]
Ŝ(ti)−(1−p)

V̂ 1/2[Ŝ(ti)]
0.1 0.9231 0.0739 5.7246
0.3 0.8462 0.1001 3.4592
0.4 0.7692 0.1169 2.3040
0.8 0.6154 0.1349 0.8551
1.0 0.5385 0.1383 0.2782
1.5 0.4615 0.1383 -0.2782
2.0 0.3846 0.1349 -0.8551
2.3 0.3077 0.1280 -1.5023
3.6 0.2051 0.1196 -2.4662
3.8 0.1026 0.0940 -4.2286

##compute the point estimates and confidence interval for the



##mean and median survival time of the four stages

nonpa.surv = function(value, data, j){

datai = data[stage == j, ]

mtime = max(futime)

##reverse the time and the smallest time is 0

time.death = rev(c(0, value[, 1], mtime))

##compute the integrable value between every time interval

mu = 0

for(i in 1 : (length(time.death) - 1)){

mu[i] = (time.death[i] - time.death[i + 1]) * rev(c(1, value[, 4]))[i]

}

##point estimate of the mean survival time

mu.est = sum(mu)

sigma = value[, 5]

##the variance of the mean survival time

var.est = sum(rev(cumsum(mu[-length(mu)]) ^ 2) * sigma)

ci.lower = mu.est - 1.96 * sqrt(var.est)

ci.upper = mu.est + 1.96 * sqrt(var.est)

return(list(mu = mu.est, var = var.est, ci.lower = ci.lower, ci.upper = ci.upper))

}

##Compute the median confidence interval

##The output is in the above four tables

ci1 = cbind(km1[, 1], km1[, 4], sqrt(km1[, 6]), (km1[, 4] - 0.5) / sqrt(km1[, 6]))

ci2 = cbind(km2[, 1], km2[, 4], sqrt(km2[, 6]), (km2[, 4] - 0.5) / sqrt(km2[, 6]))

ci3 = cbind(km3[, 1], km3[, 4], sqrt(km3[, 6]), (km3[, 4] - 0.5) / sqrt(km3[, 6]))

ci4 = cbind(km4[, 1], km4[, 4], sqrt(km4[, 6]), (km4[, 4] - 0.5) / sqrt(km4[, 6]))


