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Abstract

This article presents an application of the Kaplan-Meier estimator and a real
data, the sequential promary biliary cirrhosis collected in Mayi clinic, which con-
tains several time dependent covariates and the observations is measured repeatedly
fits for the Cox proportional hazard models because the Cox PH model is the most
popular method for survival data. Also, by employing the model fit criterion to
determine a suitable model for the real data and the criterion considered were the
Akaike information criterion, called AIC for short. We find some factors, which have
time to event, are agreed the assumptions of PH model. So the Cox PH model is
appropriate to the data and the lifetime of patients would be related strongly to the
covariates bilirubin, age, presence of edema, SGOT, presence of hepatomegaly, pro-
thrombin time, log(platelets), albumin and log(alkaline). Moreover, whether pa-
tients took D-penicillamine or not would not affect clealy the lifetime of patients
with PBC.

Key Words: Cox proportional hazard model; Kaplan-Meier estimate; AIC; Time-
dependent.

1. Introduction

We consider methods for the analysis of data when the response of interest is the
time until some event occurs, such events are generically referred to as failure. A
principal problem examined is that of developing methods for assessing the depen-
dence of failure time on explanatory variables. Most of the statistical research was
concentrated on parametric models. While the survival analysis attempts to cover
both the parametric and nonparametric methods, the emphasis is on the more recent
nonparametric developments with applications to medical research.

This data set is a followup to the original PBC data set, which contains the base-
line measurements and survival of 426 subjects, 312 formal study participants, and
106 eligible nonenrolled subjects. This data set contains multiple laboratory results,
but only on the first 312 patients, among which 140 had died and the rest were cen-
sored and the sex ratio is at least 9 : 1 (women to men) as of the data set. The main
purpose of this study is to investigate the impact of D-penicillamine and bilirubin
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to lifetime of patients with Primary Biliary Cirrhosis (PBC). The data set contains
the covariates which are drug, patient’s age at registration, patient’s sex, pres-
ence of ascites, hepatomegaly, spiders and edema, serum bilirubin, albumin, alka-
line phosphatase, serum glutamic-oxaloacetic transaminase (SGOT), platelets per
cubic, prothrombin time and histologic stage of disease, etc...

Chapter 2 gives a summarized account of the techniques for analysis, such as
the Kaplan-Meier estimator, AIC and Cox’s PH model for time dependent covari-
ate. Checking the PH assumption and applying the methodologies in chapter 2 to
the PBC data are covered in chapter 3. In chapter 4, there are explanations of
the suitable Cox’s PH model obtained by the criteria AIC. Finally, we make some
conclusions about the model and some extensions are suggested by chapter 5.

2. The Proposed Estimators

2.1. Kaplan-Meier Estimator

The standard nonparametric technique to estimate the survival function is proposed
by Kaplan and Meier (1958), is called the Product-limit estimator. Let t1 < t2 <

· · · < tD represent the observed failure times in a sample of size n and Yi be the
number of individuals at risk prior to time ti. This estimator is defined as

Ŝ(t) =
∏
ti≤t

[
1− di

Yi

]

for all t in the range where di means the number of events at time ti. The Product-
limit estimator is a right continuous step function with jumps at the observed
event times and it provides an efficient means of estimating the survival function
for right-censored data. An alternative nonparametric estimator is suggested by
Nelson (1972). It has better small-sample-size performance estimator based on the
Product-limit estimator.

On the other hand, we wish to test whether the survival functions of two or
more samples could have significant difference which is called log rank test. at risk
in combined sample at time ti. Let Oi be the observed numbers and Ei be the
expected numbers of failures in group i, i = 1, · · · , K. Then the log rank test
statistic is defined as

X 2 =
K∑

i=1

(Oi − Ei)
2

Ei

which has approximately Chi-square distribution with degree of freedom K − 1. A
large value X 2 could lead to reject the testing hypothesis that there are discrepancies
in survivor among the K families.
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In the future, we use the Product-limit estimator to make crude comparisons the
survival curves with time independent covariates in PBC data. We can find if there
are differences in survival among the covariate’s classifications by plotting survival
curves and computing the X 2 obtained from log-rank test. By the next step, we use
semi-parametric technique to check these conditions, and hence, Cox’s PH model is
applied.

2.2. Cox’s Proportional Hazard Regression model

The Cox’s regression model (Cox, 1972) is widely used in epidemiological research
to examine the association between an exposure and a health outcome. In a typical
approach to the analysis of epidemiologic data with a continuous exposure vari-
able, the exposure is transformed to an ordinal or nominal polytomous variable and
relative risk (RR) is modeled as a step function of the exposure. The Cox’s model is
used to analyze censored data. Suppose the observed data are the triples (ti, zi, ci)
where ti is the possibly censored survival time, zi the scalar predictor variable, and
ci the event indicator, taking values of 1 if the event of interest occurred and 0 if it
did not. Then, the Cox’s proportional hazard model takes the form

h(t|Z) = h0(t) exp {Z ′β} , (1)

where h0(.) is an arbitrary unspecified hazard function and β is the regression
coefficient. If h0(t) = λ then (1) reduces to the exponential regression model; the
Weibull model is the special case h0(t) = λγ(λγ)γ−1.

In other instances, the covariate Z(t) may be thought of as a stress factor affect-
ing the individuals under study at time t. With such time-dependent covariates, the
Cox’s proportional hazard model is of the form

h(t|Z(t)) = h0(t) exp {Z(t)′β} . (2)

In next part, we would like to apply the PBC data to Cox’s proportional haz-
ard model and check whether the assumptions of proportional hazard holds. There
are some methods proposed for diagnosing and assessing the proportional hazard
assumptions. First, there has a program provided in R, called cox.zph, which sup-
plies a method to test the assumption of proportional hazards. Furthermore, the
object cox.zph contains an output of the martingale residuals. If the assumption
is true then the regression is constant over time and the plot of time versus mar-
tingale residuals would be a horizontal line. Second, the Cox-Snell residuals is used
to determine whether the fitted model is suitable for data or not. If the plot of
residuals versus the estimated cumulative hazard should be a straight line thought
the original with the slope 1 then the Cox’s model fits the data. Finally, the de-
viance residuals can be used for identifying poorly predicted subjects. We can obtain
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there exist other patterns which are not added to the Cox’s model from the plot of
individuals against the deviance residuals.

2.3. Akaike Information Criterion

The most popular and readily available methods for model fit criteria are the
Akaike information criterion, AIC for short. The AIC method estimates the ex-
pected Kullback-Leibler (KL) information (Kullback and Leibler, 1951), a measure
of the information lost when using an approximating distribution for estimation and
inference instead of the true (unknown) distribution. The degree of freedom of the
model give a bias correction to the expected KL information in large samples and
act as a penalty on the numbers of parameters in the model. The optimal model
minimizes AIC with respect to degree of freedom providing a balance between model
fit (via the log-likelihood) and parsimony (df).

A popular alternative model selection criterion is the Bayesian information cri-
terion or BIC. The BIC estimates the Bayesian factor comparing candidate models
to one another and can be applied even when no prior distribution are explicitly
specified. The definitions of AIC and BIC are as follow :

Parameter selection in terms of model degree of freedom

Criterion Fromular
AIC −2 log L + 2df
BIC −2 log L + df log n

df =model effective degrees of freedom;
n=total sample size;
log L=log partial likelihood.

Although the equations of AIC and BIC look very similar, they originate from
quite different frameworks. The BIC assumes that the true generation model is
in the set of candidate models and it measures the degree of brief that a certain
model is the true data-generating model. The AIC dose not assume that any of the
candidate models is necessarily true. And these has code, stepAIC, included in the
R and we can set k is equal to 2 if the AIC and log(n) if the BIC for the function
in R codes. However, we use the AIC method to selection a fit model for the PBC
data because the AIC is much convenient to compute than the BIC. Hence, we will
analysis the PBC data with applying the AIC to choose a suitable Cox’s model.

3. The data analysis for sequential PBC

We would not talk about the problem of missing data in this present and the co-
variate cholesterol contains much more missing data, so we intend to ignore this co-
variate. And we would make log-transformation for covariates alkaline and platelets
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before analyzing this data. Since time independent covariates in sequential PBC
data are only drug and sex, we could compute the Kaplan-Meier estimator to esti-
mate the survival functions for these two covariates.
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Figure 1: The survival and hazard functions for the patients of time independent covaraites.

Figure 1 plots the estimators of survival function for each level of drug and sex with
the Kaplan-Meier estimator. In figure 1 we know that there are discrepancies for the
patients between male and female and the female patients have more larger survival
probability than male. Contrary to drug, the survival functions of the two drug lev-
els look like similar to each other classification. There are a little cross over within
each level of the two covaraites, but we also intend to say that the cross over dose
not exist in this data. And the figures of time versus log-log survival probabilities
for covariates drug and sex in figure 1 are shown the same results which the as-
sumptions of proportional hazards is true for covariate sex. Therefore, the covariate
drug seems to be the same curv for each drug level and the cross over dose not exist
within each levels of drug and sex. On the other hand, we can compute the values
of log rank test for drug and sex by using the code survdiff in R program and their
p-values obtained by log rank test are 0.992 (larger than 0.05) and 0.00243 (less
than 0.05), respectively. So the covariate drug might not have differences between
two drug levels but there are significantly discrepancies for sex. Nevertheless, the
rest covariates are time dependent and the AFT model applied in this condition
is complex for this reason. Except this reason, a graph method with estimating
survival functions in Kaplan-Meier estimator would not derive the assumptions of
proportional hazard when the Cox’s model contains several time dependent covari-
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ates. Hence, we tend to test this situation using the coding cox.zph in R and find
a fit model of Cox’s regression.

We can choose the best model for Cox’s PH model with AIC criterion first of
all. Since we are interested in impact of D-penicillamine and bilirubin to lifetime of
patients, the two covariates must be contained in the last fitted model. Then we can
use the code stepAIC in R for each first power covariate, and hence, the fit model
is table I in Appendix II. Form the table I the test statistics of albumin and sex are
10.9861 and 5.8929 with p-values of 0.0009 and 0.0152, respectively, and the global
test statistic is X 2 = 26.2377 with a p-value of 0.0158. That means there exists some
effects of nonlinearity for the above model and the global might not be suitable for
the assumptions of Cox’s PH model. So, we consider the martingale residual used
for discovering the correct functional form for a predictor with covariates albumin
and sex.
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Figure 2: Diagnosis Tools in survival analysis on various residuals.

The covariate albumin might have the relationship of second power or log trans-
formation with the Cox’s PH model for this data and the covariate sex would not
exist a linear effect obviously where the plots are printing in (a) and (b) of figure 2
and the Wald of the test of the hypothesis of no sex effect (H0 : βf = 0) is 10.9861
with a p-value of 0.0009. The results from the stratified model in this case are quite
close to those obtained in the unstratified model. So we would like to stratify on
the covariate sex and make the second power transformation to albumin. Then, the
last fit model is

ĥ(t|Z(t)) = h0(t) exp{Z(t)′β̂} (3)
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where

Z(t)′β̂ = −0.663Z1 + 0.0413(bilirubin) + 0.0226(age) + 0.2540Z2 + 0.5037Z3

+0.0018(SGOT ) + 0.2799Z4 + 0.0758(pt)− 0.0962(log(platelets))

−0.9755(albumin) + 0.0919(albumin)2 − 0.0712(log(alkaline))

0.1165Z5

and Z1 is 1 if the patients take D-penicillamine and 0 if the patients take placebo;
Z2 is 1 if edema present without diuretics or edema resolved by diuretics and 0 if the
other situation; Z3 is 1 if edema despite diuretic therapy and 0 if the other condition;
Z4 is 1 if the presence of hepatomegaly for the individuals and 0 otherwise; Z5 is 1
if the presence of spiders and 0 otherwise.

There is the deviance residual, which is a normalized transform of martingale
residual, identifying poorly predicted individuals plotted in (c) of figure 2. The
deviance residuals are all near to zero and there dose not exist outlier or any pattern
in this plot, such as a sector and so on. Furthermore, all of points are uniformly
scattered between -3 and 3. Therefore, the assumptions of Cox’s PH are fitted in
with model (3), that is, the fit model is suitable for Cox’s PH model. For the other
way, we are also have to plot the cumulative hazards function of Cox-Snell residuals
provided a way of checking goodness of fit in (d) of figure 2. If the Cox’s model fits
the data, the plot should follow the 45o line. Although the points are mostly up the
red line (45o line), we would still say that it follows the straight line with the slope
of 1. So the plot suggests that this model dose not fit too badly. That means the
Cox model fits the PBC data. Finally, we can use the code cox.zph in R to get a
chi-square test statistic that provides a useful value to test if the Cox’s model is fit
for the PBC data. So the test statistic is equal to X 2 = 20.5961 with a p-value of
0.0813 > 0.05. That is, we do not have enough evidence to say that the assumptions
of proportional hazards is not conformed with PBC data. And the detailed output
form R programming is listed in table IV of Appendix II.

No matter what methods for testing various residuals, all of them show that
the Cox’s model is fit for PBC data and the best model is model (3) obtained by
AIC criterion. Then, we can investigate the impact of D-penicillamine and bilirubin
to lifetime of patients and obtain the information which covariate has significantly
affect the patients’ survival time by this way. Moreover, we will discuss several
circumstances what we can know from the model (3).

4. Conclusion

By the AIC criterion, we have the fit Cox’s PH model is in equation (3) based on the
stratification of female. Then the below table illustrates convariates of consideration
about the model (3).
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Covariate Est. Value exp(Est. Value) Std. Error z p
Z1(Drug) -0.0663 0.936 0.0792 -0.836 4.0e-01
bilirubin 0.0413 1.042 0.0075 5.490 4.0e-08

age in years 0.0266 1.027 0.0042 6.361 2.0e-10
Z2(edema=0.5) 0.2540 1.289 0.0990 2.566 1.0e-02
Z3(edema=1) 0.5034 1.655 0.1361 3.701 2.2e-04

SGOT 0.0018 1.002 0.0004 4.470 7.8e-06
Z4(hepatomegaly) 0.2799 1.323 0.0932 3.004 2.7e-03

pt 0.0758 1.079 0.0258 2.938 3.3e-03
log(platelet) -0.0962 0.908 0.0394 -2.440 1.5e-02

albumin -0.9755 0.377 0.4603 -2.119 3.4e-02
albumin2 0.0919 1.096 0.0670 1.313 1.9e-01

log(alkaline) -0.0712 0.931 0.0374 -1.902 5.7e-02
Z5(spider) 0.1165 1.124 0.0877 1.328 1.8e-01

In the above table, the p-values of covariates drug, albumin2 and spider are 0.4, 0.19
and 0.18 and all of them are less than 0.05. That means we do not reject the test
H0 : βi = 0, i = 1, 11, 13 at significant level 0.05. Thus, the three covariates do not
exist significant effect obviously for the patients of survival time. However, those
covariates added into Cox’s PH model would make the value of log-likelihood cor-
responding to a fitted model decreasing clearly in the AIC argument and we are
interested in the impact of D-penicillamine (drug= 1) to lifetime of patients with
PBC data. Therefore we would still consider their effect for the patients’ lifetime in
model (3).

Next, the relative risk for Cox’s PH model is considered and its defines as

ĥ(t|Zi = 1)

ĥ(t|Zi = 0)
=

h0(t) exp
{

β̂i

}

h0(t)
= exp

{
β̂i

}
.

So the relative risk for the patients using D-penicillamine as compared to using
placebo is exp{−0.0663} = 0.936 and its 95% confidence interval is (0.8013, 1.0930),
that is, the patients using D-penicillamine would have 0.936 times death risk as using
placebo and we have 95% confidence level to say that patients given a placebo are be-
tween 0.9 and 1.2 times more likely to death than patients given D-penicillamine. Al-
though the effect of drug is not significantly, patients given D-penicillamine would
have longer lifetime than patients given placebo. Similarly, if bilirubin is equal to
x + 1 and x then its relative risk is equal to exp{0.0413} = 1.042 which means
that if the bilirubin increases one milliliter then the individual’s death rate would
increase 1.042 times. And the normal bilirubin rage is between 0.2 and 1.2 milli-
liter in the medical science. Consequently, the bilirubin is larger than 20 milliliter
then the individual would fall sick of serious illness, such as Liver Cirrhosis (L.C.
for short). Thus, if the patient has high value of bilirubin then whether given D-
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penicillamine or not would have a small inference even if non-impact to lifetime of
patients.

On the other index, the relative risk for Z2 = 1 and Z3 = 0 as compared to Z2 = 0
and Z3 = 0 is exp{0.2540} = 1.289 and its corresponding 95% confidence interval is
(1.062, 1.565). Also, the relative risk for Z2 = 0 and Z3 = 1 as compared to Z2 = 0
and Z3 = 0 is exp{0.5037} = 1.655 with 95% confidence interval (1.267, 2.161). In
other words, the edema presents without diuretics or edema resolved by diuretics
for patients and edema despite diuretic therapy have between 1.062 and 1.565 times
and between 1.267 and 2.161 times more likely to death than that patients have no
edema and no diuretic therapy for edema, respectively. So, the presence of edema
for patients would have shorter lifetime with respect to no edema occurrence.

By the same argument, the presence of hepatomegaly for patients would have
between 1.102 and 1.588 times as compared to none of hepatomegaly; the presence
of spiders for patients has between 0.946 and 1.334 times as compared to none of
spiders; and albumin increased one gm leads to death risk reduces between 0.153
and 0.929 times than before increasing, etc...Also, platelets are usual between 150
and 450 thousands per UL and patients fell L.C. would decrease the amount of
platelets in clinical study. Furthermore, if the index of albumin is less than 2.5
gm/dl then patients would fall sick L.C. and have the presence of hepatomegaly
and ascites at the same time. Finally, alkaline means alkaline phosphatase and
its normal index is between 43 and 122 iu/L and the illness, L.C., might make
this index descended. From the ahead statement, the estimators of covariates es-
timated with Cox’s PH model are the same as the true situations. Thus, three
indexes would increase the lifetime of patients when they are increasing. Also, the
covariates Z1 (drug), log(platelet), albumin and alkaline would make death rate de-
creasing, i.e., these covariates would cause longer survival time. And the rest would
reduce patients’ lifetime. The connected outputs are in table III of Appendix II.

5. Discussion

We could know that the covariates Z1, log(platelets), log(alkalne), Z4 and Z5 con-
tained in our last model are not sufficiently effects for the lifetime of patients and
disease’s stage is sufficiently with the criterion AIC in Zhu M. and Fan G. and Fan
G. (2006). However, there has some different form our results, that is, the covari-
ate, disease’s stage, was not contained in our last model and we intended to say
that log(platelets), log(alkalne) and Z4 have sufficiently influences in table III of
Appendix II. Although there are more covariates choosed with Cox’s PH model in
this project than in Zhu M. and Fan G. (2006), the important covariates except
the disease’s stage which influence the lifetime of patients are still contained in our
last model. This shows we might omit some imformations of the PBC data not to
consider and we could adjust by transforming covaraites.
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Furthermore, we do not apply the AFT model to this data concluded time
dependent covariates. Here has a similar method, step stress accelerated degrada-
tion tests, which is useful to analysis time dependent covariates in reliability. Sec-
ond, there are many missing observations in this PBC data and we remove the whole
rows includes missing data. But we could consider an argumented inverse probabil-
ity weighted (AIPW) estimator of Wang and Chen (2001) that avoids its stronger
censorship condition through inverse probabilty weighting. Upon inserting the miss-
ingness probabilities or consistent estimates thereof, this estimator can be calculated
using an EM procendure. Thus, we could consider the step stress and Cox’s model
estimated parameters with using AIPW estimator to apply a data containing im-
complete data (or missing data) and more than one time dependent covariate. By
those parametric and semi-parametric ways, we could find which model is the best
model to fit a data.
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I

Appendix I : Data Introduction

Sequential PBC

The variables in the data set are :

case number;

number of days between resistration and the earlier death, transplantation, or study
analysis time;

status: 0=alive, 1=transplanted, 2=death;

drug: 1=D-penicillamine, 0=placebo;

age in days, at restration;

sex: 0=male, 1=female;

day: number of days between enrollment and this visit date; remaining values on the
line of data refer to this visit;

presence of ascites: 0=no, 1=yes;

presence of hepatomegaly: 0=no, 1=yes;

presence of spiders: 0=no, 1=yes;

presence of edema: 0=no edema and no diuretic therapy for edema, 0.5=edema present
without diuretics, or edema resolved by diuretics; 1=edema despite diuretic therapy;

serum bilirubin in mg/dl;

albumin in gm/dl;

alkaline phosphatase in U/liter;

SGOT in U/ml;

platelets per cubic ml/1000;

prothrombin time in seconds; and

histologic stage of disease.



II

Appendix II : Tables and Figures

Table I: model selection with AIC criterion
Covariate ρ chisq p

Z1(drug=1) -0.0133 0.1194 0.7297
bilirubin 0.0450 1.1559 0.2823
albumin -0.1264 10.9861 0.0009

age 0.0099 0.0697 0.7918
sex(female) -0.0897 5.8929 0.0152
edema(0.5) 0.0116 0.0930 0.7604
edema(1) 0.0207 0.2928 0.5884
SGOT -0.0234 0.2066 0.6494

hepatomegaly(1) -0.0136 0.1251 0.7235
pt -0.0117 0.0618 0.8037

log(platelets) 0.0385 1.0477 0.3060
log(alkaline) 0.0418 1.1281 0.2882
spiders(1) -0.0279 0.5015 0.4788
GLOBAL NA 26.2377 0.0158

Table II: AIC values of transformating albumin and startifying sex

Transformation df AIC
albumin only 12 6143.961

albumin and albumin2 13 6144.62
albumin−1 only 12 6145.199

log(albumin) only 12 6143.38
sqrt(albumin) only 12 6143.434

Table II shows that the covariates entered into the Cox’s model h(t|Z(t)) = h0(t) exp {Z′(t)β}
where Z(t) means the covariates in table I. With AIC criteria, we should choose the condi-
tion with minimizes AIC value, i.e., add the covariate log(albumin) into the above Cox’s
model. But the chi-square test statistic is 8.2594 with a p-value of 0.0041<0.05, this
shows that the covariate log(albumin) does not conform to the assumptions of Cox’s PH
model. However, the likelihood ratio test statistic between the two models, addding albu-
min, albumin2 and log(albumin) only, is 2 and its p-value is 0.1573>0.05. This means
that there dose not significant difference between these models. Thus, we would attend to
choose the situation that a model contains the covariates albumin and albumin2.



III

Table III: The last fit model with Cox’s PH model
Covaraite Est. Value Std. Error z p lower .95 upper .95

Z1(drug=1) -0.0663 0.0792 -0.836 4.0e-01 0.801 1.093
bilirubin 0.0413 0.0075 5.490 4.0e-08 1.027 1.058

age in years 0.0266 0.0042 6.361 2.0e-10 1.019 1.035
Z2(edema=0.5) 0.2540 0.0990 2.566 1.0e-02 1.062 1.565
Z3(edema=1) 0.5037 0.1361 3.701 2.2e-04 1.267 2.161

SGOT 0.0018 0.0004 4.470 7.8e-06 1.001 1.003
Z4(hepatomegaly) 0.2799 0.0932 3.004 2.7e-03 1.102 1.588

pt 0.0758 0.0258 2.938 3.3e-03 1.026 1.135
log(platelets) -0.0962 0.0394 -2.440 1.5e-02 0.841 0.981

albumin -0.9755 0.4603 -2.119 3.4e-02 0.153 0.929
albumin2 0.0919 0.0670 1.313 1.9e-01 0.956 1.257

log(alkaline) -0.0712 0.0374 -1.902 5.7e-02 0.865 1.002
Z5(spider=1) 0.1165 0.0877 1.328 1.8e-01 0.946 1.334

The lower .95 and upper .95 are the lower bound and upper bound of 95% confidence in-
terval for relative risk, respectively. The z values in table III obtain from the Wald’s
test and p’s are the p-values with respect to z that are using to test the null hypotheses
H0 : βi = 0, ∀i. Also, the red words show that βi’s are not equal to 0 obviously at signifi-
cant level 0.05.

Table IV: The last fit model for checking the PH assumptions

Covariate ρ chisq p
Z1(drug=1) -0.0090 0.0561 0.8128

bilirubin 0.0499 1.4163 0.2340
age in years 0.0237 0.3985 0.5278

Z2(edema=0.5) 0.0254 0.4500 0.5024
Z3(edema=1) 0.0305 0.6223 0.4302

SGOT -0.0333 0.4189 0.5175
Z4(hepatomegaly) -0.0093 0.0598 0.8069

pt -0.0153 0.1045 0.7465
log(platelets) 0.0496 1.7702 0.1834

albumin -0.0846 1.9694 0.1605
albumin2 0.0537 0.7360 0.3910

log(alkaline) 0.0431 1.2079 0.2718
Z5(spider=1) -0.0164 0.1777 0.6733

GOLBAL NA 20.5961 0.0813

The p-value of GOLBAL is 0.0813>0.05, that is, we do not reject the H0: the PH as-
sumptions hold. So we could believe that this model conform to the PH assumptions and
using Cox’s PH model to fit the PBC data is right.



IV

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survivor curves for two sex levels

sex = 0
sex = 1

Figure 3: The survival curvs fitted with stratification sex.

This figure is the survivavor curvs of each stratification of sex fitted with KM estimator
of the last fit Cox’s model where the red line means the survival probabilty of female for the
patients and the black line means survival probability of male for the individuals. Form this
figure, we could know that the lifetime of female for the patients is longer than males. On
the other hand, there has larger death risk for males then females.
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Figure 4: Testing the time dependent for all discrete covariates.

We could know whether the covariates were time dependent or not from these fig-
ures. In plot (d), the line dose not seem to be a horizontal line, but this condition is not
very clearly and there has a few onservations at the back time. So, we also could acept
it is a horizontal line. And the rest plots were arising horizontal lines for every differ-
ent covariate. Although we make sure that several covariates in the last fit Cox’s model
are time dependent covariates, we could still see that all covariates contained in the last
fit Cox’s model do not exist time dependent obviously. However, it is not proper to test
time dependent covariate by a graph, and hence, the above figures would be used as a
consultation.
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Appendix III : Codes for Programming R

library(MASS)

library(survival)

library(nlme)

status = ifelse(status == 2, 1, 0)

## Transformating the time in days to in years

age = age / 365.24

begin = begin / 365.24 ; endtime = endtime / 365.24

S = Surv(begin, endtime, status)

alka.l = log(alka)

plate.l = log(plate)

## Fitting the Kaplan-Meier estimator for drug and sex

fit.drug = survfit(S ~ factor(drug))

fit.sex = survfit(S ~ factor(sex))

##Plotting the KM survival curv

plot(fit.drug[1] $ time, fit.drug[1] $ surv, type = "s", xlab = "Time(year)",

ylab = "S(t)", main = "Survival curves for the covariate drug")

##Plotting the cumulative hazards figures

##exchange fit.drug with fit.sex and then the figures about sex are ploted

plot(fit.drug[1] $ time, log(-log(fit.drug[1] $ surv)), type = "s", xlab =

"Time(year)", ylab = "log-log S(t)", main = "Proportional hazard testing for drug")

##Log-rank test

surv.time = num / 365.24

S = Surv(surv.time, fustat)

test.drug = survdiff(S ~ factor(drug))

test.sex = survdiff(S ~ factor(sex))

##Model selection with AIC criterion

Scope = list(upper = ~ (factor(drug) + bilirubin + age + factor(sex) + factor(asci)

+ factor(hep) + factor(spider) + factor(edema) + albumin + alka.l +

SGOT + plate.l + pt + factor(stage)), lower = ~(factor(drug) +

bilirubin))

pm_0 = coxph(S ~ factor(drug) + bilirubin)

pm_f = stepAIC(pm_0, Scope, trace = F)

## pm_f is the fit model for this data

m1 = coxph(S ~ factor(drug) + bilirubin + age + factor(sex) + factor(edema) +

SGOT + factor(hep) + pt + plate.l + alka.l + factor(spider))

m2 = coxph(S ~ factor(drug) + bilirubin + age + factor(edema) +
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SGOT + factor(hep) + pt + plate.l + albumin + alka.l + factor(spider))

##Computing each model’s value of log likelihood

extractAIC(m1)[2]

extractAIC(m2)[2]

##Plotting the survival curv estimated by KM estimator

##for the stratification sex.

plot(survfit(mi), lty = 1 : 2, col = 1 : 2, main =

"Survivor curves for two sex levels")

##Plotting the figure to show if the covariates are time dependent.

fit.cox = cox.zph(mi, transform = ’identity’)

plot(fit.cox[4], main = "(a)") ; plot(fit.cox[5], main = "(b)")

plot(fit.cox[6], main = "(c)") ; plot(fit.cox[7], main = "(d)")

plot(fit.cox[8], main = "(e)") ; plot(fit.cox[9], main = "(f)")

plot(fit.cox[10], main = "(g)") ; plot(fit.cox[11], main = "(h)")

plot(fit.cox[12], main = "(i)")


