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ABSTRACT

In this paper the relative forecast performance of nonlinear models to linear
models is assessed by the conditional probability that the absolute forecast
error of the nonlinear forecast is smaller than that of the linear forecast.
The comparison probability is explicitly expressed and is shown to be an
increasing function of the distance between nonlinear and linear forecasts
under certain conditions. This expression of the comparison probability
may not only be useful in determining the predictor, which is either a more
accurate or a simpler forecast, to be used but also provides a good
explanation for an odd phenomenon discussed by Pemberton. The relative
forecast performance of a nonlinear model to a linear model is demon-
strated to be sensitive to its forecast origins. A new forecast is thus
proposed to improve the relative forecast performance of nonlinear models
based on forecast origins. # 1997 John Wiley & Sons, Ltd.

J. forecast, Vol. 16, 491±508 (1997)

No. of Figures: 13. No. of Tables: 1. No. of References: 8.

KEY WORDS forecast origin; multi-step forecast; SETAR model

INTRODUCTION

Prediction is an important topic in time series analysis. Many stationary phenomena in practice
can be described or at least be approximated by stationary linear time series models, e.g. the
ARMA(p, q) models (see, for example, Priestly, 1989). However, many nonlinear phenomena
such as limit cycles, frequency modulations (Tong, 1990) and animal population cycles (Oster
and Ipaktchi, 1978) cannot be described adequately by linear time series models, unless
super¯uous parameters are involved with. Intuitively, if the true model is a nonlinear time series
model, then any statistical inferences using analysis for the nonlinear model, which capture the
nonlinear characteristic of the data, should be better than those by using linear approximation.
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However, this is not always the case for the prediction problem. For example, Davies et al. (1988)
and Pemberton (1989), by numerical simulation, observe the phenomenon that the conditional
mean and conditional median forecasts of nonlinear time series models have poor forecast
performance compared to those of linear models. Therefore, if the linear forecast is not very
much worse than the nonlinear forecast, then it is reasonable to adopt the former forecast rather
than the nonlinear forecast, at least for computational reasons. More importantly, in practical
applications for a given data set, unless an additional test is done in advance, there is no way of
knowing whether the true model is factually linear or nonlinear. Thus, there arises the question:
Under what circumstances should the nonlinear predictors be adopted?

The present research is motivated by Davies et al. (1988) who conducted three experiments
to compare the forecast performance of nonlinear SETAR (Self-Exciting Threshold
AutoRegressive) models with linear AR models. In experiment I they carried out the
identi®cation and estimation of SETAR models for real time series data sets. In experiments II
and III they simulated series for di�erent lengths respectively from each of 50 randomly selected
stationary SETAR(2;1,1) models of the form

Xn �
aXnÿ1 � en if Xnÿ1 4 0
bXnÿ1 � en if Xnÿ1 > 0

�
�1�

where en's are i.i.d. N(0, 1) r.v's. For each set of the data, both nonlinear SETAR models and
linear ARmodels were ®tted. Among three experiments the relative frequencies, of the events that
the absolute forecast error of anm-step (m� 1, 2, 3) nonlinear forecast is smaller than that of the
linear AR forecast, range from 48% to 69% when the conditional mean is used as the forecast
and range from 47% to 71% when the conditional median is used. These results strongly imply
that there is a positive probability that the linear forecast is better than the nonlinear forecast
even when the true model is nonlinear.

Pemberton (1989) conducted simulations for model (1) with a�ÿb� 0.4 and 0.9 and ®tted
generated data by AR models. For the conditional median forecast, the conditional probability
that the absolute forecast error of the m-step nonlinear forecast is smaller than that of the
AR forecast given ~Xt � (X1 , . . . , Xt), is Pm(

~Xt)�max{Fm(Qm(
~Xt) j ~Xt), 17Fm(Qm(

~Xt) j ~Xt)},
where Fm(

. j ~Xt) is the conditional distribution function of Xt�m given ~Xt and Qm(
~Xt) is the

midpoint of the two forecasts. It can be shown that Pm(
~Xt) is not less than 1/2. Pemberton, by

plotting Pm(
~Xt) against the values of the stationary density function of the true model, observed

that the nonlinear conditional median forecast performs better at those forecast origin points
whose probability density has low values than at those points whose probability density has high
ones (in the sense that Pm(

~Xt) is far greater than or close to 0.5). Pemberton also conducted his
simulation for the simple piecewise constant model:

Xn �
a � en if Xnÿ1 4 0
ÿa � en if Xnÿ1 > 0

�
�2�

with a� 3 and ®tted the data with a linear AR model by least squares method. Pemberton
observed that (1) for lagsm� 1, 2, . . . , 30, the minima of Pm(

~Xt), RMSE and RMAE appear in a
vicinity of the modes of the stationary distribution. The RMSE (RMAE) denotes the Ratio of the
Mean Squared (Absolute) Error of the conditional mean (median, correspondingly) forecast by
using the nonlinear model to that by using the AR model; (2) when m!1, RMSE
(decreasingly) and RMAE (not necessarily decreasingly) tend to one whereas Pm(

~Xt) tends to 1/2.
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Recently, Tiao and Tsay (1994) compare the post-sample forecast of TAR model versus linear
AR(2) model for US quarterly real GNP data by the ratio of mean squared forecast errors. The
nonlinear TAR model only outperforms the linear AR model by a substantial margin in short-
term forecasts at two regimes of the four forecast regimes.

All the above examples show that for the prediction problem, the nonlinear forecast may not
be more accurate than the linear forecast, even when the true model is nonlinear and that both
linear and nonlinear forecasts are asymptotically equivalent for long-term prediction. In order to
better understand the poor forecast problem of the nonlinear time series models, the properties of
the forecast performance criterion Pm(

~Xt) considered by both Davies et al. and Pemberton are
studied in this paper. Under certain conditions, the criterion Pm(

~Xt) is shown to be an increasing
function of the distance between linear and nonlinear forecasts. This result gives a nice
explanation for the odd phenomena discussed by Pemberton (1989). In their simulation studies,
since the distance between two forecasts are minimized around the modes of the stationary
distribution of the process, the criterion Pm(

~Xt) is minimized at forecast regions of high
probability density (see Example 1 below). For time series forecasting, usually either conditional
means or conditional medians are used as optimal forecasts. However, from the above-mentioned
studies and as will also be shown in this paper, the relative forecast performance (for both
conditional mean and conditional median) of a nonlinear model to a linear model is rather
sensitive to the forecast origins. Given a nonlinear time series, one can theoretically ®nd a linear
model which well approximates the true nonlinear models.

The organization of the paper is as follows. In the next section de®nitions and symbols are
presented. In the third section the relation between Pm(

~Xt) and the distance between linear and
nonlinear forecasts is exposed. An example is given to illustrate the odd phenomenon discussed
by Pemberton. In the fourth section a new method is suggested which selects forecasts from
conditional means or conditional medians by comparing their forecast performance with linear
models. An example of piecewise constant SETAR model is also given. General conclusions will
be given in the ®fth section. All the technical proofs are given in the Appendix.

DEFINITIONS AND NOTATIONS

Consider the nonlinear autoregressive model of order p(NLAR(p))

Xn � l0�Xnÿ1, . . . , Xnÿp� � en �3�

where l0( . ) is a measurable function from Rp to R, en's are i.i.d. r.v's with mean zero, variance s2

and a common probability density function g( . ). Model (3) includes linear, SETAR and
exponentially autoregressive (see Ozaki, 1985) models as special cases. Throughout this paper,
the process {Xn} de®ned by model (3) is assumed to be stationary. Assuming the observations
~Xt � (X1 , X2 , . . . , Xt) (capitals are used for both random variables and realizations) is gener-
ated from model (3), the unknown value of Xt�m (m5 1) will be predicted by either the con-
ditional mean or the conditional median when ~Xt is given. Since the conditional mean
E(Xt�m j ~Xt) minimizes the mean squared error, it is also called theMMSE forecast. Similarly, the
conditional median of Xt�m when ~Xt is given will be called the MMAE (Minimum Mean
Absolute Error) forecast. In general, there are no closed forms of the MMSE and MMAE
forecasts for NLAR(p) models, except some numerical algorithms that may be available. The
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goal of this paper is to compare the NLAR(p) forecast with the linear AR(p) forecast when the
true model is factually NLAR(p). De®ne

Pm� ~Xt� � P� jXt�m ÿ NLm� ~Xt� j<jXt�m ÿ ARm�Xt� k; ~Xt� �4�

where NLm(
~Xt) is the nonlinear m-step MMSE or MMAE forecast and ARm(

~Xt) is the linear
AR(p) m-step conditional mean forecast. When NLm� ~Xt� 6� ARm� ~Xt�, it can be shown that

Pm� ~Xt� � Fm�Qm� ~Xt� j ~Xt�I �Rÿ� � �1 ÿ Fm�Qm� ~Xt� j ~Xt�I �R�� �5�

where Fm(
. j ~Xt) is the conditional distribution of Xt�m given ~Xt, Qm� ~Xt� � 1

2�NLm� ~Xt� �
ARm� ~Xt��, I � � � is the indicator function, Rÿ � { ~Xt :NLm(

~Xt) < ARm(
~Xt)}, and R� �

{ ~Xt :NLm(
~Xt) >ARm(

~Xt)}. The probability Pm(
~Xt) is considered as a criterion to compare

the forecast performance, by Davies et al. as well as by Pemberton. Finally, we denote

xm( ~Xt)� jNLm(
~Xt)7ARm(

~Xt� j, the distance between the nonlinear and linear forecasts at the

forecast origin ~Xt.

FORECAST ACCURACY AND FORECAST DISTANCE

In this section the comparison probability Pm(
~Xt) and the ratio of mean squared forecast errors

are shown to be increasing functions of the forecast distance xm( ~Xt) (see Theorems 1 and 5
below). Throughout this paper, mm( ~Xt) denotes the m-step conditional mean and Mm(

~Xt) the
m-step conditional median of the NLAR(p) model.

Theorem 1 Suppose that (X1 , X2 , . . . , Xt) is observed from the NLAR(p) model (3). If we write
Fm(x j ~Xt)� F(x7NLm(

~Xt)), then

Pm� ~Xt� � F�12xm� ~Xt��I �Rÿ� � �1 ÿ F�ÿ1
2xm� ~Xt���I �R�� �6�

This equation shows that for the MMAE forecast, Pm(
~Xt)5 1/2 a.s., if P(xm( ~Xt)� 0)� 0. If the

distribution F( . ) is continuous and symmetric about 0, then Pm� ~Xt� � F�12xm� ~Xt��.
Corollary 2 Let G( . ) denote the distribution function of the innovations. For multi-step

forecast (i.e. m>1), the distribution function F in Theorem 1 is given by F(x)�
E[G(x7 l0(Xt�m71 , . . . , Xt�m7p) � NLm(

~Xt)) j ~Xt]. Especially for the one-step MMSE forecast,

since NL1(
~Xt)� l0(Xt , . . . , Xt�17p), we have P1� ~Xt� � G�12x1� ~Xt��I �Rÿ� � �1 ÿ G�ÿ1

2x1� ~Xt���I �R��.

The proofs of Theorem 1 and Corollary 2 are immediate and hence omitted.
Note that Pm(

~Xt) is the probability that the nonlinear forecast is better than the linear forecast.
Therefore, we may say that the nonlinear forecast is better than the linear forecast if
Pm� ~Xt�>1=2. Theorem 1 shows that the nonlinear MMAE forecast is not worse than the linear
MMAE forecast. However, it should be noted that this conclusion is not true practically since the
theoretic nonlinear forecast NLm(

~Xt) is factually unknown in real situations. In real applications,
the nonlinear AR function l0(Xt�m71 , . . . , Xt�m7p) is usually unknown and only its estimates
are available. Even if it were known, the forecast NLm(

~Xt) cannot be exactly computed and only
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an approximation of it may be available. This shows that the nonlinear forecast may not be
actually better than the linear forecast.

For the MMSE forecasts, the nonlinear forecast may not be better than the linear forecast,
even theoretically. For example, when the distribution of the innovations satis®es
G�12x1� ~Xt��< 1=2 and the origin is in the set Rÿ; or 1 ÿ G�ÿ1

2x1� ~Xt��< 1=2 and the origin is
in the set R�. If the error in the computation of the MMSE nonlinear forecast is taken into
account, the MMSE nonlinear forecast will further lose its superiority to the linear forecast.

If the regressor l0 has an explicit form and the distribution of the innovations is known,
sometimes the conditional distribution Fm(x j ~Xt) of Xt�m can be explicitly expressed. As an
example, consider the piecewise constant SETAR model:

Xn � aj � en if Xnÿ1 2 �cjÿ1; cj � �7�
where j� 1,2, . . . , l, ÿ1� c0 < c1< � � �< cl�1, en's are i.i.d. N(0, 1) random variables.

Theorem 3 Consider the m-step MMSE forecast when the true model is (7). In this case, we have
NLm(

~Xt)� mm( ~Xt). When Xt 2 �cjÿ1, cj], j� 1, 2, . . . , l, we have

Pm� ~Xt� � Pm�Xt� � Hm;j

xm�Xt�
2

� �
I �Rÿ� � 1 ÿ Hm;j ÿ

xm�Xt�
2

� �� �
I �R��

where Hm;j�x� �
Pl

i�1 k
�m�
ij F�x � a�m�ij �, 8j � 1, 2, . . . , l, k

�m�
ij are elements of the matrix Km7 1

with K� (F(ci7 aj)7F(ci717 aj)) and a�m�ij � ÿai �
Pl

i�1 k
�m�
ij a1.

Corollary 4 For model (2), NLm(
~Xt)� mm( ~Xt)�ÿabm7 1 sign(Xt), the comparison probability

has the following explicit form:

Pm�Xt� � Hm

xm�Xt�
2

� �
I �Rÿ� � 1 ÿ Hm ÿ

xm�Xt�
2

� �� �
I �R��

where Hm�x� � k
�m�
1 F�x ÿ 2 sign�Xt�ak�m�2 � � k

�m�
2 F�x � 2 sign�Xt�ak�m�1 �, k

�m�
1 � �1 ÿ bmÿ1�=2,

k
�m�
2 � �1 � bmÿ1�=2, and b� 17 2F(a).
Now, consider the ratio of the mean squared (absolute) errors of the nonlinear forecasts to

linear forecasts under model (3). De®ne

RMSEm� ~Xt� �
��Xt�m ÿ ARm� ~Xt��2 j ~Xt�

MSE�mm� ~Xt� j ~Xt�
where

MSE�mm� ~Xt� j ~Xt� � E��Xt�m ÿ mm� ~Xt��2 j ~Xt�
� s2 � E��l0�Xt�mÿ1; . . . ;Xt�mÿp� ÿ mm� ~Xt��2 j ~Xt�

and de®ne

RMAEm� ~Xt� �
E� j �Xt�m ÿ ARm� ~Xt� k ~Xt�

MAE�Mm� ~Xt� j ~Xt�
where MAE(Mm(

~Xt) j ~Xt)� E[j (Xt�m7Mm(
~Xt) k ~Xt].
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The following theorem shows that both RMSEm(
~Xt) and RMAE( ~Xt) are increasing functions

of xm( ~Xt).

Theorem 5 If model (3) is the true model, then

RMSEm� ~Xt� � 1 � �xm� ~Xt��2
MSE�mm� ~Xt� j ~Xt�

and

RMAEm� ~Xt� � 1 �
2 j R ARm� ~Xt�

Mm� ~Xt�
�x ÿ ARm� ~Xt�� dFm�x j ~Xt� j
MAE�Mm� ~Xt� j ~Xt�

Next, let us consider the m-step forecast for large m when model (3) is the true model. We say
that the time series {Xt} de®ned by model (3) is causal if for all t,Xt can be written as a function of
et , et71 , . . . . In this case, we have s�Xt;Xtÿ1; . . .� � s�et; etÿ1; . . .�. When {Xt} de®ned by model
(3) is stationary and causal, we have

mm� ~Xt� � E�Xt�m j ~Xt� �D E�X0 jBÿtÿm ~Xt� 2 s�eÿm; eÿmÿ1; . . .�

where B is the backward shift operator, that is, BXt�Xt71 . By Kolmogorov's zero-one law,
mm( ~Xt) tends to a constant as m!1. It is easy to see that the limit of mm( ~Xt) is the mean of Xt .
Similarly, we can show that Mm(

~Xt) tends to the median of Xt and that ARm(
~Xt) tends to the

mean of Xt . Thus, we proved the following theorem.

Theorem 6 In addition to the condition of Theorem 1, we assume that the time series {Xt} is
stationary and causal. When m is large, for the conditional mean nonlinear forecast, we have

Pm� ~Xt� � F�0�I �Rÿ� � �1 ÿ F�0��I �R��
RMSEm� ~Xt� ! 1

�8�

and for the conditional median nonlinear forecast,

Pm� ~Xt� !
F�12 jmeanÿmedium j � if median < mean

� 1
2 if median � mean

1 ÿ F�ÿ1
2 jmeanÿmedian j � if median>mean

8>><>>: �9�

RMAEm� ~Xt� ! 1 � 2 j R mean
median�x ÿ mean� dFm�x j ~Xt�

E jXt ÿ median j

Note that the F(0) in model (8) may not be 1/2 since F is centerized at the mean, whereas
F(0)� 1/2 in model (9) since F is centerized at the median.

In the following, we give an example to illustrate the results in this section.
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Example 1 Suppose that ~Xt � (X1 , . . . , Xt) is observed from model (2) and an AR(1) model is
®tted to the data. The autoregressive coe�cient f is estimated by the least squares estimate

f̂ �
Pt

i�2 XiXiÿ1Pt
i�1 X

2
i

The linear conditional mean forecast is ARm�Xt� � f̂
m
Xt and the nonlinear forecast is

mm(Xt)�ÿabm7 1 sign(Xt), where b� 17 2F(a). The conditional distribution of Xt�m given ~Xt

is Fm�x j ~Xt� � 1
2�F�x � a��1 � bmÿ1 sign�Xt�� � F�x ÿ a��1 ÿ bmÿ1 sign�Xt���. From this, the

conditional median forecast Mm(
~Xt) can be evaluated. Figures 1 and 2 give the plots of mm(Xt),

Mm(
~Xt) and ARm(Xt) versus Xt , with a� 1.5. The forecast distance of two conditional means is

xm�Xt� � j f̂
m
Xt � abmÿ1 sign�Xt� j . Note that the least squares estimate f̂ converges to

r � E�X1X2�
E�X2

1�
� ÿ a�2j�a� ÿ ab�

1 � a2

as t!1, where j is the density function of the standard normal distribution. If a� 1.5, then
f̂ � ÿ0:7. Figure 3 is the plot of xm(Xt) versus Xt , Figures 4±6 the plots of Pm(Xt) (given by

Figure 1. Conditional mean and conditional
median forecasts versus origins X1 for the AR(1)
model and model (2) with a� 1.5: odd-step
forecast. ÐÐÐ Conditional mean, . . . . . . . con-
ditional median

Figure 2. Even-step forecast
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Figure 3

Figure 4
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Figure 5

Figure 6
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Corollary 4) versus Xt (the de®nition of the modi®ed forecast is given in Theorem 7) and Figure 7
the plot of RMSEm(Xt) versus Xt , where

RMSEm�Xt� � 1 � �xm�Xt��2
1 � a2�1 ÿ b2mÿ2�

Clearly, from Figure 7 it can be seen that the RMSEm(Xt) is not necessarily a decreasing function
in m at all origins Xt . This is contrary to Pemberton's observation about RMSEm(

~Xt) as
mentioned earlier. When t is large, the intersection of the two m-step conditional means given Xt

(by equating the two conditional means) is given by

jXtj �
ÿabmÿ1

ĵm
�
���� ab a2 � 1

a2 � D�a�
� �m����!1

as m!1 where

D�a� � ÿ 2aj�a�
b
2 �0; 1�

When a� 1.5, the stationary density

f �x� � j�x � a� � j�x ÿ a�
2

Figure 7. RMSEm(Xt) versus Xt for the AR(1) model and model (2) with a� 1.5
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of model (2) has modes around x�+1.5 and the intersection points for xt4 0 are given in
Table I. Since the intersection points of the two forecasts are not in the neighbourhood of the
modes of the stationary density function, contrary to Pemberton's observation (see above), the
poor forecast region is not in the region of high density. See Figures 8±11 for the plots of Pm(

~Xt)
of mm( ~Xt) versus the stationary density of Xt . However, if a is large but m is not, then
bmÿ1=f̂

m � 1 and abmÿ1=f̂
m � a. For example, in Pemberton's experiment a� 3, the

intersection points are close to the modes Xt� + 3 of the stationary p.d.f. Thus, Pemberton
observe a minimum of Pm(Xt) and RMSEm(Xt) in the vicinity of the modes when m is small.
Furthermore, since for all Xt , xm(Xt)! 0 as m!1, thus Pm�Xt� ! 1=2 and RMSEm(Xt)! 1
as m!1, which implies the multi-step forecast performance of linear model is asymptotically
as good as that of the true nonlinear piecewise constant model.

A NEWLY PROPOSED FORECAST

Calculating the nonlinear conditional mean forecast, in general, is much easier than computing
the conditional median forecast. However, the former is sometimes worse than the AR predictor
whose computation is the easiest among the three. If one wants to use the nonlinear forecast for

Table I. The intersection points of model (2) with a� 1.5 and AR(1) model when Xt4 0

Step m 1 2 3 4 5 6 7 8 9 10

ÿ abm7 1/f̂
m

2.08 2.51 3.02 3.64 4.38 5.28 6.36 7.66 9.23 11.12

Figure 8
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Figure 9

Figure 10
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not losing the bene®ts of the nonlinear modelling, we suggest a new forecast which has the highest
comparison probability relative to the AR forecast.
Consider the case when the true model is a nonlinear one. Then the m-step conditional

probability distribution function of Xt�m given ~Xt is usually skewed. Thus, the MMSE forecast is
liable to be in¯uenced by the skewness of the conditional distribution; furthermore, its Pm(

~Xt) is
sometimes less than 0.5. For the MMAE forecast, although its comparison probability Pm(

~Xt) is
always greater than or equal to 0.5, yet its value is more di�cult to compute. Therefore, we
suggest an alternative forecast, combining the MMSE forecast, and the MMAE forecast, which
has a higher comparison probability Pm(

~Xt). The proposed forecast MFm(
~Xt) is de®ned as

MFm� ~Xt� � mm� ~Xt�I �Rÿ� �Mm� ~Xt�I �R�� if mm� ~Xt�>Mm� ~Xt�
� Mm� ~Xt�I �Rÿ� � mm� ~Xt�I �R�� if mm� ~Xt�4Mm� ~Xt�

where Rÿ � { ~Xt : mm( ~Xt)4ARm(
~Xt)} and R� � { ~Xt : mm( ~Xt) >ARm(

~Xt)}. If the true model is
nonlinear, theoretically we can still ®nd a reasonable approximate linear model. Then, the new
forecast is the nonlinear MMSE forecast unless its relative forecast performance is worse than the
MMAE forecast, which certainly includes the case when the MMSE performs worse than the
linear forecast. In Example 2, the MFm(

~Xt) forecast of model (2) is shown to be the MMSE
forecast for ~Xt lying in a high stationary density region. In Theorem 7, assuming the true model is
nonlinear, Pm(

~Xt) of the forecast MFm(
~Xt) is shown to be the maximum of those of MMSE and

MMAE forecasts.

Figure 11
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To indicate the predictor used in the comparison probability, let Pm(
~Xt, mm), Pm(

~Xt, Mm) and
Pm(

~Xt, MFm) denote the Pm(
~Xt) of mm( ~Xt), Mm(

~Xt) and MFm(
~Xt) respectively.

Theorem 7 If model (3) is the true model, then

Pm� ~Xt;MFm� � maxfPm� ~Xt; mm�;Pm� ~Xt;Mm�g5 1
2

Remark It seems that the computation of MFm is more complicated than computing Mm(
~Xt) for

Mm(
~Xt) is involved in the de®nition of MFm . However, in many cases, the relation between

mm( ~Xt) and Mm(
~Xt) can be determined before computing them (see Example 2 below).

Thus, Mm(
~Xt) needs only be computed when MFm�Mm .

Example 2 (Example 1, continued) Them-step conditional density ofXt�m given Xt for model (2)

is

f m�x jXt� � k
�m�
1 j�x ÿ sign�Xt�a� � k

�m�
2 j�x � sign�Xt�a�

where b� 17 2F(a), k�m�1 and k
�m�
2 are given in Corollary 4. The skewness of fm(x j xt) is a�ected

by bothm and b which determine the weights of the linear combination of j(x � a) and j(x7 a).
See Figures 12 and 13 for the plots of fm(x j xt4 0) versus x when a� 1, 2, m� 1, 2, 3, 4, 5. It
can be proved (see the Appendix) that

(1) mm(Xt)4Mm(Xt) if Xt4 0 and m is odd or Xt>0 and m is even
(2) mm(Xt) >Mm(Xt) if Xt4 0 and m is even or Xt >0 and m is odd.

Figure 12
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The new forecast of model (2) with a� 1.5 can be simpli®ed as MFm�Xt� � mm�Xt�I �Km� �
Mm�Xt�I �Kc

m�, where mm(Xt)�ÿabm7 1 sign(Xt), Km � fXt : jXtj4 jabmÿ1=f̂
mjg, Kc

m �
fXt : jXtj> jabmÿ1=f̂

mjg and f̂ � ÿ0:7. See Table I in Example 1 for the values of abmÿ1=f̂
m

for m� 1, 2, . . . , 10. Therefore the proposed forecast MFm(Xt) is the m-step conditional mean

for origins Xt in high stationary probability density regions and is the m-step conditional median

for origins Xt in low stationary density regions. The plots of Pm(Xt) versus Xt forMFm(Xt), mm(Xt)

and Mm(Xt), m� 1, 2, 3 are given in Figures 4±6.

DISCUSSION AND CONCLUSIONS

If the true model is completely known or partially known (or known functional form with
unknown parameters) and the criterion is chosen as the RMSE (RMAE), then the best forecast is
the conditional mean (median) forecast. However, if the comparison probability Pm(

~Xt) is chosen
as the criterion, the case becomes complicated. In the theorems in the third section, the expres-
sions of Pm(

~Xt) are given. It has been proven that Pm(
~Xt) is an increasing function of the forecast

distance xm( ~Xt) for origin
~Xt in disjoint regions. To determine which predictor should be used,

one has to compute the two predictors in comparison. This is seemingly not a good deal because
the purpose is to use the linear forecast to save computation time. However, there may be
alternative ways to determine which predictor should be used. As illustrated in Example 2,
when computing the MFm(

~Xt), one can determine whether Mm(
~Xt) is needed. Also, as noted by

Figure 13
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Pemberton, when ~Xt is in the region of high density values, the distance xm( �Xt) generally
(although not always) has smaller values and hence the linear and nonlinear forecasts are
comparable.

The newly proposed forecast provides an alternative way of selecting conditional mean or
conditional median forecast when the m-step conditional distribution is skewed. However, when
the m-step conditional distribution is not of a location scale family or when the model is more
complicated than the piecewise constant SETAR model the property of Pm(

~Xt) still needs further
studies.

APPENDIX

Proof of Theorem 3 Since the conditional distribution of Xt�m given Xt 2 �cjÿ1; cj� is Fm;j�x� �Pl
i�1 k

�m�
ij F�x ÿ ai� (see Pemberton, 1990),

Fm;j�Qm�Xt�� �
Xl
i�1

k
�m�
ij F

�
xm�Xt�

2
� mm�Xt� ÿ ai

�" #
I �Rÿ�

�
Xl
i�1

k
�m�
ij F

�
ÿ xm�Xt�

2
� mm�Xt� ÿ ai

�" #
I �R��

Given Xt 2 �cjÿ1; cj�; mm�Xt� �
Pl

i�1 k
�m�
ij ai. Therefore, the result is obtained by setting

a�m�ij � mm�Xt� ÿ ai and by model (5). QED

Proof of Corollary 4 The conditional distribution of Xt�m given Xt is

Fm�x� � k
�m�
2 F�x � sign�Xt�a� � k

�m�
1 F�x ÿ sign�Xt�a�

Therefore, by model (5), for Xt in Rÿ

Pm�Xt� � Fm�Qm�Xt��
� k

�m�
2 F�Qm�Xt� � sign�Xt�a� � k

�m�
1 F�Qm�Xt� ÿ sign�Xt�a�

� k
�m�
2 F�12xm�Xt� ÿ abmÿ1 sign�Xt� � sign�Xt�a�
� k

�m�
1 F�12xm�Xt� ÿ abmÿ1 sign�Xt� ÿ sign�Xt�a�

� k
�m�
2 F�12xm�Xt� � 2a sign�Xt�k�m�1 � � k

�m�
1 F�12xm�Xt� ÿ 2a sign�Xt�k�m�2 �

� Hm�12xm�Xt�� �A1�

Similarly, one can prove for Xt in R�

Pm�Xt� � 1 ÿ Fm�Qm�Xt�� � 1 ÿ Hm�ÿ1
2xm�Xt�� �A2�

QED

Proof of Theorem 5 Since

E��Xt�m ÿ ARm� ~Xt��2 j ~Xt� � MSE�mm� ~Xt� j ~Xt� � �ARm� ~Xt� ÿ mm� ~Xt��2
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it is easy to derive model (8). Furthermore, since

E j x ÿ a j ÿ E jx ÿ b j � �b ÿ a��1 ÿ 2F�a�� ÿ 2

Z b

a

�b ÿ x� dF�x�; if b> a

� �a ÿ b��2F�a� ÿ 1� ÿ 2

Z a

b

�x ÿ b� dF�x�; if b < a

thus model (9) is derived by letting a�Mm(
~Xt) and b� ARm(

~Xt).

Proof of Theorem 7 First consider the case when mm( ~Xt) >Mm(
~Xt).

(1) If ARm(
~Xt)5mm( ~Xt), then MFm(

~Xt)� mm( ~Xt) and

Pm� ~Xt;MFm� � Fm�Qm�mm� j ~Xt�
> Fm�Qm�Mm� j ~Xt��5 1

2�
� Pm� ~Xt;Mm�

where Fm(
. j ~Xt) is the conditional distribution of Xt�m given ~Xt, Qm�mm� � 1

2�mm� ~Xt� � ARm� ~Xt��
and Qm�Mm� � 1

2�Mm� ~Xt� � ARm� ~Xt��.
(2) If Mm(

~Xt)4ARm(
~Xt) < mm( ~Xt), then MFm(

~Xt)�Mm(
~Xt) and

Pm� ~Xt;MFm� � Fm�Qm�Mm� j ~Xt�
5Fm�Mm�Xt� j ~Xt� � 1 ÿ Fm�Mm�Xt� j ~Xt��� 1

2�
>1 ÿ Fm�Qm�mm� j ~Xt� � Pm� ~Xt; mm�

(3) If ARm(
~Xt) < Mm(

~Xt), then MFm(
~Xt)�Mm(

~Xt) and

Pm� ~Xt;MFm� � 1 ÿ Fm�Qm�Mm� j ~Xt��5 1
2�

>1 ÿ Fm�Qm�mm� j ~Xt�
� Pm� ~Xt; mm�

When mm( ~Xt)4Mm(
~Xt), the result can be obtained similarly. QED

Proof of (1) and (2) in Example 2 Since j(x) is decreasing for x5 0,

1

k

Z 2ak

0

j�x� dx � 1

k
F�2ak� ÿ 1

2

� �
is decreasing in k. First consider the case for Xt4 0. Let Fm(

. jXt) denote the conditional
distribution of Xt�m given Xt , then

Fm�mm�Xt� jXt� ÿ
1

2
� k

�m�
1 F�2ak�m�2 � � k

�m�
2 F�ÿ2ak�m�1 � ÿ

1

2

� k
�m�
1 k

�m�
2

1

k
�m�
2

F�2ak�m�2 � ÿ
1

2

� �
ÿ 1

k
�m�
1

F�2ak�m�1 � ÿ
1

2

� �" #
5 0 if and only if k

�m�
2 4 k

�m�
1
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Thus, mm�Xt�5Mm�Xt� , Fm�mm�Xt� jXt�5 1
2, k

�m�
2 4 k

�m�
1 , m is even, since b < 0.

The case when Xt>0 can be similarly proved. QED
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